You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
On-Policy Distillation involves a student model generating rollouts for each batch of training data. We subsequently obtain the probability distributions for each token of the rollouts from both the student and teacher models. The student model is then optimized to minimize the negative Kullback-Leibler (KL) divergence between its own token distributions and those of the teacher model.
0 commit comments