-
Notifications
You must be signed in to change notification settings - Fork 0
/
loading_analyzing.py
266 lines (192 loc) · 6.68 KB
/
loading_analyzing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
COLAB = False
# from IPython import get_ipython # type: ignore
# ipython = get_ipython(); assert ipython is not None
# ipython.run_line_magic("load_ext", "autoreload")
# ipython.run_line_magic("autoreload", "2")
# Standard imports
import os
import torch
from tqdm import tqdm
import plotly.express as px
# Imports for displaying vis in Colab / notebook
import webbrowser
import http.server
import socketserver
import threading
PORT = 8000
torch.set_grad_enabled(False);
# For the most part I'll try to import functions and classes near where they are used
# to make it clear where they come from.
if torch.backends.mps.is_available():
device = "mps"
else:
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Device: {device}")
def display_vis_inline(filename: str, height: int = 850):
'''
Displays the HTML files in Colab. Uses global `PORT` variable defined in prev cell, so that each
vis has a unique port without having to define a port within the function.
'''
if not(COLAB):
webbrowser.open(filename);
else:
global PORT
def serve(directory):
os.chdir(directory)
# Create a handler for serving files
handler = http.server.SimpleHTTPRequestHandler
# Create a socket server with the handler
with socketserver.TCPServer(("", PORT), handler) as httpd:
print(f"Serving files from {directory} on port {PORT}")
httpd.serve_forever()
thread = threading.Thread(target=serve, args=("/content",))
thread.start()
# output.serve_kernel_port_as_iframe(PORT, path=f"/{filename}", height=height, cache_in_notebook=True)
PORT += 1
from datasets import load_dataset
from transformer_lens import HookedTransformer
from sae_lens import SAE
model = HookedTransformer.from_pretrained("gpt2-small", device = device)
# the cfg dict is returned alongside the SAE since it may contain useful information for analysing the SAE (eg: instantiating an activation store)
# Note that this is not the same as the SAEs config dict, rather it is whatever was in the HF repo, from which we can extract the SAE config dict
# We also return the feature sparsities which are stored in HF for convenience.
sae, cfg_dict, sparsity = SAE.from_pretrained(
release = "gpt2-small-res-jb", # see other options in sae_lens/pretrained_saes.yaml
sae_id = "blocks.8.hook_resid_pre", # won't always be a hook point
device = device
)
from transformer_lens.utils import tokenize_and_concatenate
dataset = load_dataset(
path = "NeelNanda/pile-10k",
split="train",
streaming=False,
)
token_dataset = tokenize_and_concatenate(
dataset= dataset,# type: ignore
tokenizer = model.tokenizer, # type: ignore
streaming=True,
max_length=sae.cfg.context_size,
add_bos_token=sae.cfg.prepend_bos,
)
sae.eval() # prevents error if we're expecting a dead neuron mask for who grads
with torch.no_grad():
# activation store can give us tokens.
batch_tokens = token_dataset[:32]["tokens"]
_, cache = model.run_with_cache(batch_tokens, prepend_bos=True)
# Use the SAE
feature_acts = sae.encode(cache[sae.cfg.hook_name])
sae_out = sae.decode(feature_acts)
# save some room
del cache
# ignore the bos token, get the number of features that activated in each token, averaged accross batch and position
l0 = (feature_acts[:, 1:] > 0).float().sum(-1).detach()
print("average l0", l0.mean().item())
px.histogram(l0.flatten().cpu().numpy()).show()
from transformer_lens import utils
from functools import partial
# next we want to do a reconstruction test.
def reconstr_hook(activation, hook, sae_out):
return sae_out
def zero_abl_hook(activation, hook):
return torch.zeros_like(activation)
print("Orig", model(batch_tokens, return_type="loss").item())
print(
"reconstr",
model.run_with_hooks(
batch_tokens,
fwd_hooks=[
(
sae.cfg.hook_name,
partial(reconstr_hook, sae_out=sae_out),
)
],
return_type="loss",
).item(),
)
print(
"Zero",
model.run_with_hooks(
batch_tokens,
return_type="loss",
fwd_hooks=[(sae.cfg.hook_name, zero_abl_hook)],
).item(),
)
example_prompt = "When John and Mary went to the shops, John gave the bag to"
example_answer = " Mary"
utils.test_prompt(example_prompt, example_answer, model, prepend_bos=True)
logits, cache = model.run_with_cache(example_prompt, prepend_bos=True)
tokens = model.to_tokens(example_prompt)
sae_out = sae(cache[sae.cfg.hook_name])
def reconstr_hook(activations, hook, sae_out):
return sae_out
def zero_abl_hook(mlp_out, hook):
return torch.zeros_like(mlp_out)
hook_name = sae.cfg.hook_name
print("Orig", model(tokens, return_type="loss").item())
print(
"reconstr",
model.run_with_hooks(
tokens,
fwd_hooks=[
(
hook_name,
partial(reconstr_hook, sae_out=sae_out),
)
],
return_type="loss",
).item(),
)
print(
"Zero",
model.run_with_hooks(
tokens,
return_type="loss",
fwd_hooks=[(hook_name, zero_abl_hook)],
).item(),
)
with model.hooks(
fwd_hooks=[
(
hook_name,
partial(reconstr_hook, sae_out=sae_out),
)
]
):
utils.test_prompt(example_prompt, example_answer, model, prepend_bos=True)
from sae_dashboard.sae_vis_data import SaeVisConfig
from sae_dashboard.sae_vis_runner import SaeVisRunner
test_feature_idx_gpt = list(range(10)) + [14057]
feature_vis_config_gpt = SaeVisConfig(
hook_point=hook_name,
features=test_feature_idx_gpt,
minibatch_size_features=64,
minibatch_size_tokens=256,
verbose=True,
device=device,
)
visualization_data_gpt = SaeVisRunner(feature_vis_config_gpt).run(
encoder=sae, # type: ignore
model=model,
tokens=token_dataset[:10000]["tokens"], # type: ignore
)
# SaeVisData.create(
# encoder=sae,
# model=model, # type: ignore
# tokens=token_dataset[:10000]["tokens"], # type: ignore
# cfg=feature_vis_config_gpt,
# )
from sae_dashboard.data_writing_fns import save_feature_centric_vis
filename = f"demo_feature_dashboards.html"
save_feature_centric_vis(sae_vis_data=visualization_data_gpt, filename=filename)
from sae_lens.analysis.neuronpedia_integration import get_neuronpedia_quick_list
# this function should open
neuronpedia_quick_list = get_neuronpedia_quick_list(
test_feature_idx_gpt,
layer=sae.cfg.hook_layer,
model="gpt2-small",
dataset="res-jb",
name="A quick list we made",
)
if COLAB:
# If you're on colab, click the link below
print(neuronpedia_quick_list)