forked from RjDuan/AdvDrop
-
Notifications
You must be signed in to change notification settings - Fork 0
/
transferability.py
242 lines (200 loc) · 9.43 KB
/
transferability.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import numpy as np
import json
import os
import sys
import time
import math
import io
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import models
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torchattacks.attack import Attack
from utils import *
from compression import *
from decompression import *
from PIL import ImageFile
from info_attack import InfoDrop
from Models.transformers import diet_tiny, diet_small, vit_tiny, vit_small
from PIL import ImageFile
import lpips
import torch
import torch.nn as nn
import torch.nn.functional as F
ImageFile.LOAD_TRUNCATED_IMAGES = True
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
source_model = ["resnet"]
target_model = ["resnet18"]
model_t = ["resnet", vit_tiny, vit_small, diet_tiny, diet_small]
q_sizes = [20, 60, 100]
attacks = [False]
model_names = ["ResNet50", "ViT_tiny", "ViT_small", "DieT_tiny", "DieT_small"]
"""
Source s_model: Model on which the attack would be done, adversarial images
will be generated using this s_model.
target s_model: Model on which the adversarial images would be tested
"""
class Normalize(nn.Module):
def __init__(self, mean, std):
super(Normalize, self).__init__()
self.register_buffer('mean', torch.Tensor(mean))
self.register_buffer('std', torch.Tensor(std))
def forward(self, input):
# Broadcasting
input = input / 255.0
mean = self.mean.reshape(1, 3, 1, 1)
std = self.std.reshape(1, 3, 1, 1)
return (input - mean.to(device=input.device)) / std.to(
device=input.device)
def pred_label_and_confidence(model, input_batch, labels_to_class):
input_batch = input_batch.cuda()
with torch.no_grad():
out = model(input_batch)
_, index = torch.max(out, 1)
percentage = torch.nn.functional.softmax(out, dim=1) * 100
# print(percentage.shape)
pred_list = []
for i in range(index.shape[0]):
pred_class = labels_to_class[index[i]]
pred_conf = str(round(percentage[i][index[i]].item(), 2))
pred_list.append([pred_class, pred_conf])
return pred_list
def lpips_2imgs(img_batch0, img_batch1, version="0.1", use_gpu=True):
loss_fn = lpips.LPIPS(net='alex', version=version)
if (use_gpu):
loss_fn.cuda()
# img0 = lpips.im2tensor(lpips.load_image(path0)) # RGB image from [-1,1]
# img1 = lpips.im2tensor(lpips.load_image(path1))
if (use_gpu):
img_batch0 = img_batch0.cuda()
img_batch1 = img_batch1.cuda()
dist01 = loss_fn.forward(img_batch0, img_batch1)
# print('Distance: %.3f' % dist01)
return dist01
def build_model(model, adver=False):
"""
Builds the model and the norm layer
adver=True means the adversarial images will be passed through the model,
no need of resizing for that case.
"""
if model == "resnet":
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(), ]
) \
if not adver else transforms.Compose([transforms.ToTensor(),])
norm_layer = Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
backbone = models.resnet50(pretrained=True)
elif model == "resnet18":
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(), ]
) \
if not adver else transforms.Compose([transforms.ToTensor(),])
norm_layer = Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
backbone = models.resnet18(pretrained=True)
else:
backbone = model()
config = resolve_data_config({}, model=backbone)
transform = create_transform(**config)
transform.transforms.pop()
transform = transform if not adver else transforms.Compose([transforms.ToTensor(),])
norm_layer = Normalize(mean=config['mean'],
std=config['std'])
return backbone, norm_layer, transform
if __name__ == "__main__":
f = open("results/transferability.txt", "w")
for att in attacks:
idx_ = 0
targetted_attack = att
for s, t in zip(source_model, target_model):
if targetted_attack:
name = model_names[idx_]+"_targetted"
else:
name = model_names[idx_]+ "_untargetted"
print(f"{idx_}::: model_name: {name}")
for q_size in q_sizes:
device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu")
class_idx = json.load(open("./imagenet_class_index.json"))
idx2label = [class_idx[str(k)][1] for k in range(len(class_idx))]
class2label = [class_idx[str(k)][0] for k in
range(len(class_idx))]
backbone_s, norm_layer_s, transform_s = build_model(s, adver=False)
backbone_t, norm_layer_t, transform_t = build_model(t, adver=True)
s_model = nn.Sequential(norm_layer_s, backbone_s.to(device))
s_model = s_model.eval()
s_model_name = name
t_model = nn.Sequential(norm_layer_t, backbone_t.to(device))
t_model = t_model.eval()
batch_size = 20
q_size = q_size
cur_cnt = 0
suc_cnt = 0
data_dir = "./test-data"
save_dir = "./results"
data_clean(data_dir)
normal_data = image_folder_custom_label(root=data_dir,
transform=transform_s,
idx2label=class2label)
normal_loader = torch.utils.data.DataLoader(normal_data,
batch_size=batch_size,
shuffle=False)
i = 0
fool_rate = 0
file_number = 0
lpips_score = 0
for i, (images, labels) in enumerate(normal_loader): # in range(tar_cnt//batch_size):
print("Iter: ", i)
gt_labels = labels
if targetted_attack:
labels = torch.from_numpy(np.random.randint(0, 1000, size=images.shape[0]))
images = images * 255.0
steps = 500 if targetted_attack else 50 # change again from 20 to 500
attack = InfoDrop(s_model, batch_size=images.shape[0],
q_size=q_size, steps=steps,
targeted=targetted_attack)
# Add unclamped adv images
at_images, at_labels, suc_step, at_images_unclamped = attack(images, labels)
### Calculate fool rate on the target s_model
labels_before_attack = t_model(images.to(device="cuda"))
_, labels_before_attack = torch.max(labels_before_attack.data, 1)
labels_after_attack = t_model(at_images_unclamped.to(device="cuda"))
_, labels_after_attack = torch.max(
labels_after_attack.data, 1)
if (labels_after_attack == at_labels).sum() != 20:
print("different results")
fool_rate += torch.sum(labels_before_attack != labels_after_attack)
# outputs_pre_attack = s_model(images.to(device="cuda"))
# _, pred_pre_attack_label = torch.max(outputs_pre_attack.data,
# 1)
# fool_rate += torch.sum(pred_pre_attack_label != at_labels)
dist = lpips_2imgs(at_images.to(device="cuda"), images.to(device="cuda"))
dist = dist.sum()/at_images.shape[0]
# print(f"Avg Sim Batch {dist}")
lpips_score += dist
labels = labels.to(device)
# Success rate of adversarial examples on the target model
# check target labels with the predictions of the target model
if targetted_attack:
suc_cnt += (labels_after_attack == labels).sum().item()
else:
suc_cnt += (labels_after_attack != labels).sum().item()
print("Current suc. rate: ", suc_cnt / ((i + 1) * batch_size))
score_list = np.zeros(len(normal_data))
score_list[:suc_cnt] = 1.0
stderr_dist = np.std(np.array(score_list)) / np.sqrt(
len(score_list))
print('Avg suc rate: %.5f +/- %.5f' % (
suc_cnt / len(normal_data), stderr_dist))
print(f"Fool Rate {q_size} is : {fool_rate / len(normal_data)}")
print(f"Average Similarity score: {lpips_score / len(normal_loader)}")
f.write(
f"{name}_{q_size},{(suc_cnt / len(normal_data))}, {stderr_dist}, {fool_rate / len(normal_data)}, {lpips_score / len(normal_loader)} \n")
idx_ += 1
f.close()