-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathinfer.py
46 lines (39 loc) · 1.45 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
import random
from argparse import ArgumentParser
import matplotlib.pyplot as plt
import torch
from PIL import Image
from torchvision import transforms
from gan_module import Generator
parser = ArgumentParser()
parser.add_argument(
'--image_dir', default='/Downloads/CACD_VS/', help='The image directory')
@torch.no_grad()
def main():
args = parser.parse_args()
image_paths = [os.path.join(args.image_dir, x) for x in os.listdir(args.image_dir) if
x.endswith('.png') or x.endswith('.jpg')]
model = Generator(ngf=32, n_residual_blocks=9)
ckpt = torch.load('pretrained_model/state_dict.pth', map_location='cpu')
model.load_state_dict(ckpt)
model.eval()
trans = transforms.Compose([
transforms.Resize((512, 512)),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])
nr_images = len(image_paths) if len(image_paths) >= 6 else 6
fig, ax = plt.subplots(2, nr_images, figsize=(20, 10))
random.shuffle(image_paths)
for i in range(nr_images):
img = Image.open(image_paths[i]).convert('RGB')
img = trans(img).unsqueeze(0)
aged_face = model(img)
aged_face = (aged_face.squeeze().permute(1, 2, 0).numpy() + 1.0) / 2.0
ax[0, i].imshow((img.squeeze().permute(1, 2, 0).numpy() + 1.0) / 2.0)
ax[1, i].imshow(aged_face)
# plt.show()
plt.savefig("mygraph.png")
if __name__ == '__main__':
main()