-
Notifications
You must be signed in to change notification settings - Fork 117
/
data-centric.bib
1030 lines (887 loc) · 36.6 KB
/
data-centric.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
@article{oakden2019hidden,
title={Hidden stratification causes clinically meaningful failures in machine learning for medical imaging},
author={Oakden-Rayner, Luke and Dunnmon, Jared and Carneiro, Gustavo and R{\'e}, Christopher},
journal={arXiv preprint arXiv:1909.12475},
year={2019}
}
@inproceedings{liu2015deep,
title={Deep learning face attributes in the wild},
author={Liu, Ziwei and Luo, Ping and Wang, Xiaogang and Tang, Xiaoou},
booktitle={Proceedings of the IEEE international conference on computer vision},
pages={3730--3738},
year={2015}
}
@inproceedings{sagawa2020distributionally,
title={Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization},
author={Sagawa, Shiori and Koh, Pang Wei and Hashimoto, Tatsunori B and Liang, Percy},
booktitle={The International Conference on Learning Representations ({ICLR})},
year={2020}
}
@inproceedings{zhu2017unpaired,
title={Unpaired image-to-image translation using cycle-consistent adversarial networks},
author={Zhu, Jun-Yan and Park, Taesung and Isola, Phillip and Efros, Alexei A},
booktitle={Proceedings of the IEEE international conference on computer vision},
pages={2223--2232},
year={2017}
}
@article{mariani2018bagan,
title={Bagan: Data augmentation with balancing gan},
author={Mariani, Giovanni and Scheidegger, Florian and Istrate, Roxana and Bekas, Costas and Malossi, Cristiano},
journal={arXiv preprint arXiv:1803.09655},
year={2018}
}
@article{zhang2017mixup,
title={mixup: Beyond empirical risk minimization},
author={Zhang, Hongyi and Cisse, Moustapha and Dauphin, Yann N and Lopez-Paz, David},
journal={arXiv preprint arXiv:1710.09412},
year={2017}
}
@article{cubuk2019randaugment,
title={RandAugment: Practical data augmentation with no separate search},
author={Cubuk, Ekin D and Zoph, Barret and Shlens, Jonathon and Le, Quoc V},
journal={arXiv preprint arXiv:1909.13719},
year={2019}
}
@inproceedings{yin2019fourier,
title={A fourier perspective on model robustness in computer vision},
author={Yin, Dong and Lopes, Raphael Gontijo and Shlens, Jon and Cubuk, Ekin Dogus and Gilmer, Justin},
booktitle={Advances in Neural Information Processing Systems},
pages={13255--13265},
year={2019}
}
@inproceedings{li2018deep,
title={Deep domain generalization via conditional invariant adversarial networks},
author={Li, Ya and Tian, Xinmei and Gong, Mingming and Liu, Yajing and Liu, Tongliang and Zhang, Kun and Tao, Dacheng},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
pages={624--639},
year={2018}
}
@article{simon1954spurious,
title={Spurious correlation: A causal interpretation},
author={Simon, Herbert A},
journal={Journal of the American statistical Association},
volume={49},
number={267},
pages={467--479},
year={1954},
publisher={Taylor \& Francis}
}
@inproceedings{buolamwini2018gender,
title={Gender shades: Intersectional accuracy disparities in commercial gender classification},
author={Buolamwini, Joy and Gebru, Timnit},
booktitle={Conference on fairness, accountability and transparency},
pages={77--91},
year={2018}
}
@article{wah2011caltech,
title={The caltech-ucsd birds-200-2011 dataset},
author={Wah, Catherine and Branson, Steve and Welinder, Peter and Perona, Pietro and Belongie, Serge},
year={2011},
publisher={California Institute of Technology}
}
@inproceedings{codella2018skin,
title={Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic)},
author={Codella, Noel CF and Gutman, David and Celebi, M Emre and Helba, Brian and Marchetti, Michael A and Dusza, Stephen W and Kalloo, Aadi and Liopyris, Konstantinos and Mishra, Nabin and Kittler, Harald and others},
booktitle={2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)},
pages={168--172},
year={2018},
organization={IEEE}
}
@article{ho2019population,
title={Population based augmentation: Efficient learning of augmentation policy schedules},
author={Ho, Daniel and Liang, Eric and Stoica, Ion and Abbeel, Pieter and Chen, Xi},
journal={arXiv preprint arXiv:1905.05393},
year={2019}
}
@article{ganin2016domain,
title={Domain-adversarial training of neural networks},
author={Ganin, Yaroslav and Ustinova, Evgeniya and Ajakan, Hana and Germain, Pascal and Larochelle, Hugo and Laviolette, Fran{\c{c}}ois and Marchand, Mario and Lempitsky, Victor},
journal={The Journal of Machine Learning Research},
volume={17},
number={1},
pages={2096--2030},
year={2016},
publisher={JMLR.org}
}
@inproceedings{long2018conditional,
title={Conditional adversarial domain adaptation},
author={Long, Mingsheng and Cao, Zhangjie and Wang, Jianmin and Jordan, Michael I},
booktitle={Advances in Neural Information Processing Systems},
pages={1640--1650},
year={2018}
}
@article{devries2017improved,
title={Improved regularization of convolutional neural networks with cutout},
author={DeVries, Terrance and Taylor, Graham W},
journal={arXiv preprint arXiv:1708.04552},
year={2017}
}
@article{lecun1998gradient,
title={Gradient-based learning applied to document recognition},
author={LeCun, Yann and Bottou, L{\'e}on and Bengio, Yoshua and Haffner, Patrick},
journal={Proceedings of the IEEE},
volume={86},
number={11},
pages={2278--2324},
year={1998},
publisher={Ieee}
}
@article{mu2019mnist,
title={Mnist-c: A robustness benchmark for computer vision},
author={Mu, Norman and Gilmer, Justin},
journal={arXiv preprint arXiv:1906.02337},
year={2019}
}
@inproceedings{he2016identity,
title={Identity mappings in deep residual networks},
author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
booktitle={European conference on computer vision},
pages={630--645},
year={2016},
organization={Springer}
}
%%% DATA AUGMENTATION
@inproceedings{ratner2017learning,
title={Learning to compose domain-specific transformations for data augmentation},
author={Ratner, Alexander J and Ehrenberg, Henry and Hussain, Zeshan and Dunnmon, Jared and R{\'e}, Christopher},
booktitle={Advances in neural information processing systems},
pages={3236--3246},
year={2017}
}
@article{hendrycks2019augmix,
title={AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty},
author={Hendrycks, Dan and Mu, Norman and Cubuk, Ekin D and Zoph, Barret and Gilmer, Justin and Lakshminarayanan, Balaji},
journal={arXiv preprint arXiv:1912.02781},
year={2019}
}
@inproceedings{cubuk2019autoaugment,
title={Autoaugment: Learning augmentation strategies from data},
author={Cubuk, Ekin D and Zoph, Barret and Mane, Dandelion and Vasudevan, Vijay and Le, Quoc V},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={113--123},
year={2019}
}
@inproceedings{lim2019fast,
title={Fast autoaugment},
author={Lim, Sungbin and Kim, Ildoo and Kim, Taesup and Kim, Chiheon and Kim, Sungwoong},
booktitle={Advances in Neural Information Processing Systems},
pages={6662--6672},
year={2019}
}
@inproceedings{yun2019cutmix,
title={Cutmix: Regularization strategy to train strong classifiers with localizable features},
author={Yun, Sangdoo and Han, Dongyoon and Oh, Seong Joon and Chun, Sanghyuk and Choe, Junsuk and Yoo, Youngjoon},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={6023--6032},
year={2019}
}
@inproceedings{berthelot2019mixmatch,
title={Mixmatch: A holistic approach to semi-supervised learning},
author={Berthelot, David and Carlini, Nicholas and Goodfellow, Ian and Papernot, Nicolas and Oliver, Avital and Raffel, Colin A},
booktitle={Advances in Neural Information Processing Systems},
pages={5050--5060},
year={2019}
}
@inproceedings{upchurch2017deep,
title={Deep feature interpolation for image content changes},
author={Upchurch, Paul and Gardner, Jacob and Pleiss, Geoff and Pless, Robert and Snavely, Noah and Bala, Kavita and Weinberger, Kilian},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={7064--7073},
year={2017}
}
%%%% GANs
@inproceedings{choi2018stargan,
title={Stargan: Unified generative adversarial networks for multi-domain image-to-image translation},
author={Choi, Yunjey and Choi, Minje and Kim, Munyoung and Ha, Jung-Woo and Kim, Sunghun and Choo, Jaegul},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={8789--8797},
year={2018}
}
@article{almahairi2018augmented,
title={Augmented cyclegan: Learning many-to-many mappings from unpaired data},
author={Almahairi, Amjad and Rajeswar, Sai and Sordoni, Alessandro and Bachman, Philip and Courville, Aaron},
journal={arXiv preprint arXiv:1802.10151},
year={2018}
}
@article{antoniou2017data,
title={Data augmentation generative adversarial networks},
author={Antoniou, Antreas and Storkey, Amos and Edwards, Harrison},
journal={arXiv preprint arXiv:1711.04340},
year={2017}
}
@article{gowal2019achieving,
title={Achieving Robustness in the Wild via Adversarial Mixing with Disentangled Representations},
author={Gowal, Sven and Qin, Chongli and Huang, Po-Sen and Cemgil, Taylan and Dvijotham, Krishnamurthy and Mann, Timothy and Kohli, Pushmeet},
journal={arXiv preprint arXiv:1912.03192},
year={2019}
}
@article{kannan2018adversarial,
title={Adversarial logit pairing},
author={Kannan, Harini and Kurakin, Alexey and Goodfellow, Ian},
journal={arXiv preprint arXiv:1803.06373},
year={2018}
}
@inproceedings{zheng2016improving,
title={Improving the robustness of deep neural networks via stability training},
author={Zheng, Stephan and Song, Yang and Leung, Thomas and Goodfellow, Ian},
booktitle={Proceedings of the ieee conference on computer vision and pattern recognition},
pages={4480--4488},
year={2016}
}
@article{xie2019unsupervised,
title={Unsupervised data augmentation for consistency training},
author={Xie, Qizhe and Dai, Zihang and Hovy, Eduard and Luong, Minh-Thang and Le, Quoc V},
journal={arXiv preprint arXiv:1904.12848},
year={2019}
}
@inproceedings{isola2017image,
title={Image-to-image translation with conditional adversarial networks},
author={Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={1125--1134},
year={2017}
}
@article{heinze2017conditional,
title={Conditional variance penalties and domain shift robustness},
author={Heinze-Deml, Christina and Meinshausen, Nicolai},
journal={arXiv preprint arXiv:1710.11469},
year={2017}
}
@article{winkler2019association,
title={Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition},
author={Winkler, Julia K and Fink, Christine and Toberer, Ferdinand and Enk, Alexander and Deinlein, Teresa and Hofmann-Wellenhof, Rainer and Thomas, Luc and Lallas, Aimilios and Blum, Andreas and Stolz, Wilhelm and others},
journal={JAMA dermatology},
volume={155},
number={10},
pages={1135--1141},
year={2019},
publisher={American Medical Association}
}
@inproceedings{selvaraju2017grad,
title={Grad-cam: Visual explanations from deep networks via gradient-based localization},
author={Selvaraju, Ramprasaath R and Cogswell, Michael and Das, Abhishek and Vedantam, Ramakrishna and Parikh, Devi and Batra, Dhruv},
booktitle={Proceedings of the IEEE international conference on computer vision},
pages={618--626},
year={2017}
}
@article{grover2019alignflow,
title={AlignFlow: Cycle Consistent Learning from Multiple Domains via Normalizing Flows},
author={Grover, Aditya and Chute, Christopher and Shu, Rui and Cao, Zhangjie and Ermon, Stefano},
journal={arXiv preprint arXiv:1905.12892},
year={2019}
}
@article{Ratner2017LearningTC,
title={Learning to Compose Domain-Specific Transformations for Data Augmentation},
author={Alexander J. Ratner and Henry R. Ehrenberg and Zeshan Hussain and Jared Dunnmon and Christopher R{\'e}},
journal={Advances in neural information processing systems},
year={2017},
volume={30},
pages={
3239-3249
}
}
@inproceedings{gan,
title={Generative adversarial nets},
author={Goodfellow, Ian and Pouget-Abadie, Jean and Mirza, Mehdi and Xu, Bing and Warde-Farley, David and Ozair, Sherjil and Courville, Aaron and Bengio, Yoshua},
booktitle={Advances in neural information processing systems},
pages={2672--2680},
year={2014}
}
@article{Dao2018AKT,
title={A Kernel Theory of Modern Data Augmentation},
author={Tri Dao and Albert Gu and Alexander J. Ratner and Virginia Smith and Christopher De Sa and Christopher R{\'e}},
journal={Proceedings of machine learning research},
year={2018},
volume={97},
pages={
1528-1537
}
}
@article{archambault2019mixup,
title={MixUp as Directional Adversarial Training},
author={Archambault, Guillaume P and Mao, Yongyi and Guo, Hongyu and Zhang, Richong},
journal={arXiv preprint arXiv:1906.06875},
year={2019}
}
@inproceedings{dwibedi2017cut,
title={Cut, paste and learn: Surprisingly easy synthesis for instance detection},
author={Dwibedi, Debidatta and Misra, Ishan and Hebert, Martial},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={1301--1310},
year={2017}
}
@article{Zoph2019LearningDA,
title={Learning Data Augmentation Strategies for Object Detection},
author={Barret Zoph and Ekin Dogus Cubuk and Golnaz Ghiasi and Tsung-Yi Lin and Jonathon Shlens and Quoc V. Le},
journal={ArXiv},
year={2019},
volume={abs/1906.11172}
}
@article{Dvornik2018OnTI,
title={On the Importance of Visual Context for Data Augmentation in Scene Understanding},
author={Nikita Dvornik and Julien Mairal and Cordelia Schmid},
journal={IEEE transactions on pattern analysis and machine intelligence},
year={2018}
}
@inproceedings{Wei2019EDAED,
title={EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks},
author={Jason Wei and Kai Zou},
booktitle={EMNLP/IJCNLP},
year={2019}
}
@inproceedings{Simard1998TransformationII,
title={Transformation Invariance in Pattern Recognition - Tangent Distance and Tangent Propagation},
author={Patrice Y. Simard and Yann LeCun and John S. Denker and Bernard Victorri},
booktitle={Neural Networks: Tricks of the Trade},
year={1998}
}
@article{Szegedy2014GoingDW,
title={Going deeper with convolutions},
author={Christian Szegedy and Wei Liu and Yangqing Jia and Pierre Sermanet and Scott Reed and Dragomir Anguelov and Dumitru Erhan and Vincent Vanhoucke and Andrew Rabinovich},
journal={2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2014},
pages={1-9}
}
@inproceedings{Krizhevsky2012ImageNetCW,
title={ImageNet Classification with Deep Convolutional Neural Networks},
author={Alex Krizhevsky and Ilya Sutskever and Geoffrey E. Hinton},
booktitle={NIPS},
year={2012}
}
@article{Cui2015DataAF,
title={Data Augmentation for Deep Neural Network Acoustic Modeling},
author={Xiaodong Cui and Vaibhava Goel and Brian Kingsbury},
journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing},
year={2015},
volume={23},
pages={1469-1477}
}
@inproceedings{Ko2015AudioAF,
title={Audio augmentation for speech recognition},
author={Tom Ko and Vijayaditya Peddinti and Daniel Povey and Sanjeev Khudanpur},
booktitle={INTERSPEECH},
year={2015}
}
@inproceedings{Kolomiyets2011ModelPortabilityEF,
title={Model-Portability Experiments for Textual Temporal Analysis},
author={Oleksandr Kolomiyets and Steven Bethard and Marie-Francine Moens},
booktitle={ACL},
year={2011}
}
@inproceedings{Zhang2015CharacterlevelCN,
title={Character-level Convolutional Networks for Text Classification},
author={Xiang Zhang and Junbo Jake Zhao and Yann LeCun},
booktitle={NIPS},
year={2015}
}
@inproceedings{Wang2015ThatsSA,
title={That's So Annoying!!!: A Lexical and Frame-Semantic Embedding Based Data Augmentation Approach to Automatic Categorization of Annoying Behaviors using petpeeve Tweets},
author={William Yang Wang and Diyi Yang},
booktitle={EMNLP},
year={2015}
}
@article{Yu2018QANetCL,
title={QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension},
author={Adams Wei Yu and David Dohan and Minh-Thang Luong and Rui Zhao and Kai Chen and Mohammad Norouzi and Quoc V. Le},
journal={ArXiv},
year={2018},
volume={abs/1804.09541}
}
@article{Xie2017DataNA,
title={Data Noising as Smoothing in Neural Network Language Models},
author={Ziang Xie and Sida I. Wang and Jiwei Li and Daniel L{\'e}vy and Aiming Nie and Dan Jurafsky and Andrew Y. Ng},
journal={ArXiv},
year={2017},
volume={abs/1703.02573}
}
@article{Sennrich2015ImprovingNM,
title={Improving Neural Machine Translation Models with Monolingual Data},
author={Rico Sennrich and Barry Haddow and Alexandra Birch},
journal={ArXiv},
year={2015},
volume={abs/1511.06709}
}
@inproceedings{Fadaee2017DataAF,
title={Data Augmentation for Low-Resource Neural Machine Translation},
author={Marzieh Fadaee and Arianna Bisazza and Christof Monz},
booktitle={ACL},
year={2017}
}
@inproceedings{Silfverberg2017DataAF,
title={Data Augmentation for Morphological Reinflection},
author={Miikka Silfverberg and Adam Wiemerslage and Ling Liu and Lingshuang Jack Mao},
booktitle={CoNLL Shared Task},
year={2017}
}
@inproceedings{Hu2017TowardCG,
title={Toward Controlled Generation of Text},
author={Zhiting Hu and Zichao Yang and Xiaodan Liang and Ruslan Salakhutdinov and Eric P. Xing},
booktitle={ICML},
year={2017}
}
@article{Simard2003BestPF,
title={Best practices for convolutional neural networks applied to visual document analysis},
author={Patrice Y. Simard and David Steinkraus and John C. Platt},
journal={Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.},
year={2003},
pages={958-963}
}
@article{Ciresan2012MulticolumnDN,
title={Multi-column deep neural networks for image classification},
author={Dan C. Ciresan and Ueli Meier and J{\"u}rgen Schmidhuber},
journal={2012 IEEE Conference on Computer Vision and Pattern Recognition},
year={2012},
pages={3642-3649}
}
@article{Ciresan2011HighPerformanceNN,
title={High-Performance Neural Networks for Visual Object Classification},
author={Dan C. Ciresan and Ueli Meier and Jonathan Masci and Luca Maria Gambardella and J{\"u}rgen Schmidhuber},
journal={ArXiv},
year={2011},
volume={abs/1102.0183}
}
@inproceedings{Yaeger1996EffectiveTO,
title={Effective Training of a Neural Network Character Classifier for Word Recognition},
author={Larry S. Yaeger and Richard F. Lyon and Brandyn J. Webb},
booktitle={NIPS},
year={1996}
}
@inproceedings{Simard1991TangentP,
title={Tangent Prop - A Formalism for Specifying Selected Invariances in an Adaptive Network},
author={Patrice Y. Simard and Bernard Victorri and Yann LeCun and John S. Denker},
booktitle={NIPS},
year={1991}
}
@inproceedings{Simard1992EfficientPR,
title={Efficient Pattern Recognition Using a New Transformation Distance},
author={Patrice Y. Simard and Yann LeCun and John S. Denker},
booktitle={NIPS},
year={1992}
}
@incollection{baird1992document,
title={Document image defect models},
author={Baird, Henry S},
booktitle={Structured Document Image Analysis},
pages={546--556},
year={1992},
publisher={Springer}
}
@article{Kobayashi2018ContextualAD,
title={Contextual Augmentation: Data Augmentation by Words with Paradigmatic Relations},
author={Sosuke Kobayashi},
journal={ArXiv},
year={2018},
volume={abs/1805.06201}
}
@article{Jia2016DataRF,
title={Data Recombination for Neural Semantic Parsing},
author={Robin Jia and Percy Liang},
journal={ArXiv},
year={2016},
volume={abs/1606.03622}
}
@inproceedings{Deschacht2009SemisupervisedSR,
title={Semi-supervised Semantic Role Labeling Using the Latent Words Language Model},
author={Koen Deschacht and Marie-Francine Moens},
booktitle={EMNLP},
year={2009}
}
@inproceedings{Jaitly2013VocalTL,
title={Vocal Tract Length Perturbation (VTLP) improves speech recognition},
author={Navdeep Jaitly and E. S. Hinton},
booktitle={Proc. ICML Workshop on Deep Learning for Audio, Speech and Language},
year={2013}
}
@inproceedings{LeCun1998GradientbasedLA,
title={Gradient-based learning applied to document recognition},
author={Yann LeCun and L{\'e}on Bottou and Yoshua Bengio and Patrick Haffner},
year={1998}
}
@article{Stylianou1998ContinuousPT,
title={Continuous probabilistic transform for voice conversion},
author={Yannis Stylianou and Olivier Capp{\'e} and Eric Moulines},
journal={IEEE Trans. Speech and Audio Processing},
year={1998},
volume={6},
pages={131-142}
}
@article{demyanov2015invariant,
Author = {Demyanov, Sergey and Bailey, James and Kotagiri, Ramamohanarao and Leckie, Christopher},
Journal = {arXiv:1502.04434},
Title = {Invariant backpropagation: how to train a transformation-invariant neural network},
Year = {2015}
}
@article{Karras2018ASG,
title={A Style-Based Generator Architecture for Generative Adversarial Networks},
author={Tero Karras and Samuli Laine and Timo Aila},
journal={2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2018},
pages={4396-4405}
}
@inproceedings{Mazzone2019ArtCA,
title={Art, creativity, and the potential of artificial intelligence},
author={Mazzone, Marian and Elgammal, Ahmed},
booktitle={Arts},
volume={8},
pages={26},
year={2019},
organization={Multidisciplinary Digital Publishing Institute}
}
@article{Brock2016NeuralPE,
title={Neural Photo Editing with Introspective Adversarial Networks},
author={Andrew Brock and Theodore Lim and James M. Ritchie and Nick Weston},
journal={ArXiv},
year={2016},
volume={abs/1609.07093}
}
@inproceedings{Reed2014LearningTD,
title={Learning to Disentangle Factors of Variation with Manifold Interaction},
author={Scott E. Reed and Kihyuk Sohn and Yuting Zhang and Honglak Lee},
booktitle={ICML},
year={2014}
}
@inproceedings{Reed2015DeepVA,
title={Deep Visual Analogy-Making},
author={Scott E. Reed and Yi Zhang and Yuting Zhang and Honglak Lee},
booktitle={NIPS},
year={2015}
}
@article{Gardner2015DeepMT,
title={Deep Manifold Traversal: Changing Labels with Convolutional Features},
author={Jacob R. Gardner and Matt J. Kusner and Yixuan Li and Paul Upchurch and Kilian Q. Weinberger and John E. Hopcroft},
journal={ArXiv},
year={2015},
volume={abs/1511.06421}
}
@article{Mahendran2014UnderstandingDI,
title={Understanding deep image representations by inverting them},
author={Aravindh Mahendran and Andrea Vedaldi},
journal={2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2014},
pages={5188-5196}
}
@article{Gatys2015ANA,
title={A Neural Algorithm of Artistic Style},
author={Leon A. Gatys and Alexander S. Ecker and Matthias Bethge},
journal={ArXiv},
year={2015},
volume={abs/1508.06576}
}
@article{Garrido2014AutomaticFR,
title={Automatic Face Reenactment},
author={Pablo Garrido and Levi Valgaerts and Ole Rehmsen and Thorsten Thorm{\"a}hlen and Patrick P{\'e}rez and Christian Theobalt},
journal={2014 IEEE Conference on Computer Vision and Pattern Recognition},
year={2014},
pages={4217-4224}
}
@inproceedings{Girdhar2016LearningAP,
title={Learning a Predictable and Generative Vector Representation for Objects},
author={Rohit Girdhar and David F. Fouhey and Mikel Rodriguez and Abhinav Gupta},
booktitle={ECCV},
year={2016}
}
@article{KemelmacherShlizerman2016TransfiguringP,
title={Transfiguring portraits},
author={Ira Kemelmacher-Shlizerman},
journal={ACM Trans. Graph.},
year={2016},
volume={35},
pages={94:1-94:8}
}
@inproceedings{KemelmacherShlizerman2011ExploringP,
title={Exploring photobios},
author={Ira Kemelmacher-Shlizerman and Eli Shechtman and Rahul Garg and Steven M. Seitz},
booktitle={SIGGRAPH 2011},
year={2011}
}
@article{Thies2015RealtimeET,
title={Real-time expression transfer for facial reenactment},
author={Justus Thies and Michael Zollh{\"o}fer and Matthias Nie{\ss}ner and Levi Valgaerts and Marc Stamminger and Christian Theobalt},
journal={ACM Trans. Graph.},
year={2015},
volume={34},
pages={183:1-183:14}
}
@inproceedings{Larsen2015AutoencodingBP,
title={Autoencoding beyond pixels using a learned similarity metric},
author={Anders Boesen Lindbo Larsen and S{\o}ren Kaae S{\o}nderby and Hugo Larochelle and Ole Winther},
booktitle={ICML},
year={2015}
}
@inproceedings{Huang2018AugGANCD,
title={AugGAN: Cross Domain Adaptation with GAN-Based Data Augmentation},
author={Sheng-Wei Huang and Che-Tsung Lin and Shu-Ping Chen and Yen-Yi Wu and Po-Hao Hsu and Shang-Hong Lai},
booktitle={ECCV},
year={2018}
}
@inproceedings{Sandfort2019DataAU,
title={Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks},
author={Veit Sandfort and Ke Yan and Perry J. Pickhardt and Ronald M. Summers},
booktitle={Scientific Reports},
year={2019}
}
@article{Yamaguchi2019EffectiveDA,
title={Effective Data Augmentation with Multi-Domain Learning GANs},
author={Shin'ya Yamaguchi and Sekitoshi Kanai and Takeharu Eda},
journal={ArXiv},
year={2019},
volume={abs/1912.11597}
}
@inproceedings{wang2018transferring,
title={Transferring GANs: generating images from limited data},
author={Wang, Yaxing and Wu, Chenshen and Herranz, Luis and van de Weijer, Joost and Gonzalez-Garcia, Abel and Raducanu, Bogdan},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
pages={218--234},
year={2018}
}
@inproceedings{Zhu2018DataAU,
title={Data Augmentation using Conditional Generative Adversarial Networks for Leaf Counting in Arabidopsis Plants},
author={Yezi Zhu and Marc Aoun and Marcel Krijn and Joaquin Vanschoren},
booktitle={BMVC},
year={2018}
}
@inproceedings{Sun2019UnlabeledSG,
title={Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline},
author={Wen-chen Sun and Fangai Liu and Weizhi Xu},
booktitle={ICCTA 2019},
year={2019}
}
@article{Tran2017ABD,
title={A Bayesian Data Augmentation Approach for Learning Deep Models},
author={Toan Tran and Trung Pham and Gustavo Carneiro and Lyle J. Palmer and Ian D. Reid},
journal={ArXiv},
year={2017},
volume={abs/1710.10564}
}
@article{Mounsaveng2019AdversarialLO,
title={Adversarial Learning of General Transformations for Data Augmentation},
author={Saypraseuth Mounsaveng and David V{\'a}zquez and Ismail Ben Ayed and Marco Pedersoli},
journal={ArXiv},
year={2019},
volume={abs/1909.09801}
}
@article{Lorraine2019OptimizingMO,
title={Optimizing Millions of Hyperparameters by Implicit Differentiation},
author={Jonathan Lorraine and Paul Vicol and David Duvenaud},
journal={ArXiv},
year={2019},
volume={abs/1911.02590}
}
@article{Pesteie2019AdaptiveAO,
title={Adaptive Augmentation of Medical Data Using Independently Conditional Variational Auto-Encoders},
author={Mehran Pesteie and Purang Abolmaesumi and Robert Rohling},
journal={IEEE Transactions on Medical Imaging},
year={2019},
volume={38},
pages={2807-2820}
}
@inproceedings{Casado2019CLoDSAAT,
title={CLoDSA: a tool for augmentation in classification, localization, detection, semantic segmentation and instance segmentation tasks},
author={{\'A}ngela Casado and C{\'e}sar Dom{\'i}nguez and Manuel Garc{\'i}a and J{\'o}nathan Heras and Adri{\'a}n In{\'e}s and Eloy Mata and Vico Pascual},
booktitle={BMC Bioinformatics},
year={2019}
}
@inproceedings{Hu2019LearningDM,
title={Learning Data Manipulation for Augmentation and Weighting},
author={Zhiting Hu and Bowen Tan and Ruslan Salakhutdinov and Tom Michael Mitchell and Eric P. Xing},
booktitle={NeurIPS},
year={2019}
}
@article{Beery2019SyntheticEI,
title={Synthetic Examples Improve Generalization for Rare Classes},
author={Sara Beery and Yang Liu and Dan Morris and Jim Piavis and Ashish Kapoor and Markus Meister and Pietro Perona},
journal={ArXiv},
year={2019},
volume={abs/1904.05916}
}
@article{Besnier2019ThisDD,
title={This dataset does not exist: training models from generated images},
author={Victor Besnier and Himalaya Jain and Andrei Bursuc and Matthieu Cord and Patrick P{\'e}rez},
journal={ArXiv},
year={2019},
volume={abs/1911.02888}
}
@article{Baran2019SafeAL,
title={Safe Augmentation: Learning Task-Specific Transformations from Data},
author={Irynei Baran and Orest Kupyn and A. Kravchenko},
journal={ArXiv},
year={2019},
volume={abs/1907.12896}
}
@inproceedings{Molano2018GenerativeMF,
title={Generative Models for Deep Learning with Very Scarce Data},
author={Juan Maro{\~n}as Molano and Roberto Paredes and Daniel Ramos-Castro},
booktitle={CIARP},
year={2018}
}
@article{Zhang2018DADADA,
title={DADA: Deep Adversarial Data Augmentation for Extremely Low Data Regime Classification},
author={Xiaofeng Zhang and Zhangyang Wang and Dong Liu and Qing Ling},
journal={ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
year={2018},
pages={2807-2811}
}
@article{Goodfellow2014ExplainingAH,
title={Explaining and Harnessing Adversarial Examples},
author={Ian J. Goodfellow and Jonathon Shlens and Christian Szegedy},
journal={CoRR},
year={2014},
volume={abs/1412.6572}
}
@article{Szegedy2013IntriguingPO,
title={Intriguing properties of neural networks},
author={Christian Szegedy and Wojciech Zaremba and Ilya Sutskever and Joan Bruna and Dumitru Erhan and Ian J. Goodfellow and Rob Fergus},
journal={CoRR},
year={2013},
volume={abs/1312.6199}
}
@article{Madry2017TowardsDL,
title={Towards Deep Learning Models Resistant to Adversarial Attacks},
author={Aleksander Madry and Aleksandar Makelov and Ludwig Schmidt and Dimitris Tsipras and Adrian Vladu},
journal={ArXiv},
year={2017},
volume={abs/1706.06083}
}
@article{Papernot2015DistillationAA,
title={Distillation as a Defense to Adversarial Perturbations Against Deep Neural Networks},
author={Nicolas Papernot and Patrick D. McDaniel and Xi Wu and Somesh Jha and Ananthram Swami},
journal={2016 IEEE Symposium on Security and Privacy (SP)},
year={2015},
pages={582-597}
}
@article{MoosaviDezfooli2018RobustnessVC,
title={Robustness via Curvature Regularization, and Vice Versa},
author={Seyed-Mohsen Moosavi-Dezfooli and Alhussein Fawzi and Jonathan Uesato and Pascal Frossard},
journal={2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2018},
pages={9070-9078}
}
@article{Engstrom2017ARA,
title={A Rotation and a Translation Suffice: Fooling CNNs with Simple Transformations},
author={Logan Engstrom and Dimitris Tsipras and Ludwig Schmidt and Aleksander Madry},
journal={ArXiv},
year={2017},
volume={abs/1712.02779}
}
@article{Kanbak2017GeometricRO,
title={Geometric Robustness of Deep Networks: Analysis and Improvement},
author={Can Kanbak and Seyed-Mohsen Moosavi-Dezfooli and Pascal Frossard},
journal={2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2017},
pages={4441-4449}
}
@article{Baluja2017AdversarialTN,
title={Adversarial Transformation Networks: Learning to Generate Adversarial Examples},
author={Shumeet Baluja and Ian C Fischer},
journal={ArXiv},
year={2017},
volume={abs/1703.09387}
}
@inproceedings{Song2018ConstructingUA,
title={Constructing Unrestricted Adversarial Examples with Generative Models},
author={Yang Song and Rui Shu and Nate Kushman and Stefano Ermon},
booktitle={NeurIPS},
year={2018}
}
@inproceedings{Xiao2018GeneratingAE,
title={Generating Adversarial Examples with Adversarial Networks},
author={Chaowei Xiao and Bo Li and Jun-Yan Zhu and Warren He and Mingyan Liu and Dawn Xiaodong Song},
booktitle={IJCAI},
year={2018}
}
@inproceedings{Odena2016ConditionalIS,
title={Conditional Image Synthesis with Auxiliary Classifier GANs},
author={Augustus Odena and Christopher Olah and Jonathon Shlens},
booktitle={ICML},
year={2016}
}
@article{Qiu2019SemanticAdvGA,
title={SemanticAdv: Generating Adversarial Examples via Attribute-conditional Image Editing},
author={Haonan Qiu and Chaowei Xiao and Lei Yang and Xinchen Yan and Honglak Lee and Bo Li},
journal={ArXiv},
year={2019},
volume={abs/1906.07927}
}
@inproceedings{chen2016infogan,
title={Infogan: Interpretable representation learning by information maximizing generative adversarial nets},
author={Chen, Xi and Duan, Yan and Houthooft, Rein and Schulman, John and Sutskever, Ilya and Abbeel, Pieter},
booktitle={Advances in neural information processing systems},
pages={2172--2180},
year={2016}
}
@article{Bissoto2019DeCB,
title={(De) Constructing Bias on Skin Lesion Datasets},
author={Alceu Bissoto and Michel Fornaciali and Eduardo Valle and Sandra Avila},
journal={2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)},
year={2019},
pages={2766-2774}
}
@article{Rieger2019InterpretationsAU,
title={Interpretations are useful: penalizing explanations to align neural networks with prior knowledge},
author={Laura Rieger and Chandan Singh and W. James Murdoch and Bin Yu},
journal={ArXiv},
year={2019},
volume={abs/1909.13584}
}
@article{Zhao2017MenAL,
title={Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints},
author={Jieyu Zhao and Tianlu Wang and Mark Yatskar and Vicente Ordonez and Kai-Wei Chang},
journal={ArXiv},
year={2017},
volume={abs/1707.09457}
}
@inproceedings{Park2018ReducingGB,
title={Reducing Gender Bias in Abusive Language Detection},
author={Ji Ho Park and Jamin Shin and Pascale Fung},
booktitle={EMNLP},
year={2018}
}
@article{Yang2015FromFP,
title={From Facial Parts Responses to Face Detection: A Deep Learning Approach},
author={Shuo Yang and Ping Luo and Chen Change Loy and Xiaoou Tang},
journal={2015 IEEE International Conference on Computer Vision (ICCV)},
year={2015},
pages={3676-3684}
}
@article{bowles2018gan,
title={Gan augmentation: Augmenting training data using generative adversarial networks},
author={Bowles, Christopher and Chen, Liang and Guerrero, Ricardo and Bentley, Paul and Gunn, Roger and Hammers, Alexander and Dickie, David Alexander and Hern{\'a}ndez, Maria Vald{\'e}s and Wardlaw, Joanna and Rueckert, Daniel},
journal={arXiv preprint arXiv:1810.10863},
year={2018}
}
@article{10.1001/jamadermatol.2018.2348,
author = {Adamson, Adewole S. and Smith, Avery},
title = "{Machine Learning and Health Care Disparities in Dermatology}",
journal = {JAMA Dermatology},
volume = {154},
number = {11},
pages = {1247-1248},
year = {2018},
month = {11},