forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
benchmark_reader.py
90 lines (76 loc) · 2.82 KB
/
benchmark_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import yaml
import six
import os
import copy
import paddle.distributed.fleet as fleet
import logging
cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
cont_max_ = [20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50]
cont_diff_ = [20, 603, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50]
hash_dim_ = 1000001
continuous_range_ = range(1, 14)
categorical_range_ = range(14, 40)
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(message)s', level=logging.INFO)
logger = logging.getLogger(__name__)
class Reader(fleet.MultiSlotDataGenerator):
def init(self, config):
self.config = config
def line_process(self, line):
features = line.rstrip('\n').split('\t')
dense_feature = []
sparse_feature = []
for idx in continuous_range_:
if features[idx] == "":
dense_feature.append(0.0)
else:
dense_feature.append(
(float(features[idx]) - cont_min_[idx - 1]) /
cont_diff_[idx - 1])
for idx in categorical_range_:
sparse_feature.append([hash(str(idx) + features[idx]) % hash_dim_])
label = [int(features[0])]
return [label] + sparse_feature + [dense_feature]
def generate_sample(self, line):
"Dataset Generator"
def reader():
input_data = self.line_process(line)
feature_name = ["dense_input"]
for idx in categorical_range_:
feature_name.append("C" + str(idx - 13))
feature_name.append("label")
yield zip(feature_name, input_data)
return reader
def dataloader(self, file_list):
"DataLoader Pyreader Generator"
def reader():
for file in file_list:
with open(file, 'r') as f:
for line in f:
input_data = self.line_process(line)
yield input_data
return reader
if __name__ == "__main__":
yaml_path = sys.argv[1]
utils_path = sys.argv[2]
sys.path.append(utils_path)
import common
yaml_helper = common.YamlHelper()
config = yaml_helper.load_yaml(yaml_path)
r = Reader()
r.init(config)
r.run_from_stdin()