-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclassification.py
395 lines (328 loc) · 16.5 KB
/
classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import string
import csv
from flair.data import Sentence
from flair.models import SequenceTagger
from flair.embeddings import WordEmbeddings, FlairEmbeddings, StackedEmbeddings, DocumentPoolEmbeddings, BertEmbeddings, ELMoEmbeddings, OpenAIGPTEmbeddings, RoBERTaEmbeddings, XLNetEmbeddings, BytePairEmbeddings, XLNetEmbeddings, OpenAIGPT2Embeddings, XLMEmbeddings
import torch
from torch import tensor
import numpy as np
from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score, log_loss, roc_auc_score, make_scorer, balanced_accuracy_score, classification_report, confusion_matrix
from sklearn.naive_bayes import BernoulliNB
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV, RandomizedSearchCV, cross_val_score
from sklearn.naive_bayes import ComplementNB
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import MultiLabelBinarizer
from time import time
import pickle
import umap
from sklearn.pipeline import make_union, Pipeline
from sklearn.base import TransformerMixin, BaseEstimator
#from sklearn.pipeline import Pipeline, make_pipeline
import eli5
from eli5.lime import TextExplainer
from eli5 import explain_prediction
from eli5.formatters import format_as_text
import pandas as pd
from sklearn.externals import joblib
from keras.callbacks import ModelCheckpoint, EarlyStopping
from keras.wrappers.scikit_learn import KerasClassifier
from keras.models import Sequential
from keras.layers import Dense, Conv1D, Conv2D, MaxPooling1D, Flatten, Embedding, Reshape, Input, SimpleRNN, LSTM, InputLayer, GRU, GlobalMaxPooling1D, Bidirectional
import torch.nn as nn
import torch.nn.functional as F
from keras.layers.advanced_activations import PReLU, ELU
from keras_self_attention import SeqSelfAttention, SeqWeightedAttention
from modAL.uncertainty import uncertainty_sampling
from collections import Counter
from sklearn.multiclass import OneVsRestClassifier
from sklearn.preprocessing import OneHotEncoder, LabelBinarizer
from keras.layers import Embedding
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from sklearn.base import BaseEstimator
from sklearn.base import ClassifierMixin
from eli5.formatters import format_as_text, format_as_html
keras = True
keras_mode = "MLP" # MLP, CNN, RNN, EMB
multi_label = True
attention = False
stacked = False
learned_emb = False
def parse_string(a_str):
to_ret = "".join([c.lower() for c in a_str if c in string.ascii_letters or c in string.whitespace])
to_ret2 = to_ret.split()
to_ret3 = " ".join(to_ret2)
return to_ret3
def get_misclass():
return np.where(Y_val != pipe.predict(X_val))
class MultiLabelProbClassifier(BaseEstimator, ClassifierMixin):
def __init__(self, clf):
self.clf = clf
def fit(self, X, y):
self.clf.fit(X, y)
self.model = self.clf.model
def predict(self, X):
ret = self.clf.predict(X)
return ret
def predict_proba(self, X):
if len(X) == 1:
self.probas_ = self.clf.predict_proba(X)[0]
sums_to = sum(self.probas_)
new_probs = [x / sums_to for x in self.probas_]
return new_probs
else:
self.probas_ = self.clf.predict_proba(X)
#print(self.probas_)
ret_list = []
for list_of_probs in self.probas_:
sums_to = sum(list_of_probs)
#print(sums_to)
new_probs = [x / sums_to for x in list_of_probs]
ret_list.append(np.asarray(new_probs))
return np.asarray(ret_list)
class Text2Vec( BaseEstimator, TransformerMixin):
'''
def __init__():
self.X = None
'''
def fit(self, X, y=None):
return self
def transform(self, X):
list_of_emb = []
size_of_emb = list_of_embeddings[1].size
if not isinstance(X, str):
for doc in X:
#p_str = parse_string(doc)
p_str = doc
if not p_str:
list_of_emb.append(np.zeros((size_of_emb,), dtype=np.float32))##TODO: don't hard code vector size
else:
a_set = Sentence(p_str)
stacked_embeddings.embed(a_set)
list_of_emb.append(a_set.get_embedding().cpu().detach().numpy())
to_ret = np.array(list_of_emb)
else:
try:
#p_str = parse_string(X)
p_str = X
if not p_str:
to_ret = np.zeros((size_of_emb,), dtype=np.float32)##TODO here too
else:
a_set = Sentence(p_str)
stacked_embeddings.embed(a_set)
to_ret = a_set.get_embedding().cpu().detach().numpy().reshape(1, -1)
except:
print(type(X))
print(X)
return to_ret
stacked_embeddings = DocumentPoolEmbeddings([WordEmbeddings('en'),
#XLMEmbeddings()
#ELMoEmbeddings('original')
#XLNetEmbeddings(),
#OpenAIGPT2Embeddings(),
#FlairEmbeddings('news-forward-fast'),
#FlairEmbeddings('news-backward-fast'),
WordEmbeddings('glove'),
WordEmbeddings('en-crawl'),
#BytePairEmbeddings('en', 300),
], pooling = 'mean')
stacked_embeddings_max = DocumentPoolEmbeddings([WordEmbeddings('en'),
#XLMEmbeddings()
#ELMoEmbeddings('original')
#XLNetEmbeddings(),
#OpenAIGPT2Embeddings(),
#FlairEmbeddings('news-forward-fast'),
#FlairEmbeddings('news-backward-fast'),
#WordEmbeddings('glove'),
#WordEmbeddings('en-crawl'),
#BytePairEmbeddings('en', 300),
], pooling = 'max')
stacked_embeddings_min = DocumentPoolEmbeddings([WordEmbeddings('en'),
#XLMEmbeddings()
#ELMoEmbeddings('original')
#XLNetEmbeddings(),
#OpenAIGPT2Embeddings(),
#FlairEmbeddings('news-forward-fast'),
#FlairEmbeddings('news-backward-fast'),
#WordEmbeddings('glove'),
#WordEmbeddings('en-crawl'),
#BytePairEmbeddings('en', 300),
], pooling = 'min')
#en_embedding = WordEmbeddings('en')
with open('card_classification2.csv') as csvfile:
reader = csv.reader(csvfile)
list_of_sentences = []
list_of_labels = []
list_of_embeddings = []
if not learned_emb:
for row in reader:
if multi_label:
list_of_labels.append(row[:-1])
parsed_string = row[-1]
else:
list_of_labels.append(row[0])
parsed_string = row[1]
list_of_sentences.append(parsed_string)
set_obj = Sentence(parsed_string)
stacked_embeddings.embed(set_obj)
avg_emb = set_obj.get_embedding().cpu().detach().numpy()
if stacked:
stacked_embeddings_min.embed(set_obj)
min_emb = set_obj.get_embedding().cpu().detach().numpy()
stacked_embeddings_max.embed(set_obj)
max_emb = set_obj.get_embedding().cpu().detach().numpy()
concat_emb = np.concatenate((avg_emb, min_emb, max_emb), axis=None)
#list_of_embeddings.append(set_obj.get_embedding().cpu().detach().numpy())
list_of_embeddings.append(concat_emb)
else:
list_of_embeddings.append(avg_emb)
else:
for row in reader:
if multi_label:
list_of_labels.append(row[:-1])
parsed_string = row[-1]
else:
list_of_labels.append(row[0])
parsed_string = row[1]
list_of_sentences.append(parsed_string)
if not learned_emb:
print(list_of_embeddings[1])
#print(Counter(list_of_labels).items())
if learned_emb:
t = Tokenizer()
# fit the tokenizer on the documents
t.fit_on_texts(list_of_sentences)
b_encoder = LabelBinarizer()
new_labels = b_encoder.fit_transform(list_of_labels)
X_train, X_val, Y_train, Y_val = train_test_split(np.asarray(list_of_sentences), new_labels, test_size = 0.2, stratify = list_of_labels, random_state=42)
output_size = len(set(list_of_labels))
print(output_size)
print(Y_val[1])
sequences_train = t.texts_to_sequences(X_train)
sequences_valid = t.texts_to_sequences(X_val)
X_train = pad_sequences(sequences_train)
X_val = pad_sequences(sequences_valid, maxlen=X_train.shape[1])
sequence_length = X_train.shape[1]
encoded_docs = t.texts_to_sequences(list_of_sentences)
print("dictionary size: ", len(t.word_index))
vocabulary_size = len(t.word_index)
EMBEDDING_DIM=300
vocabulary_size=len(t.word_index)+1
embedding_matrix = np.zeros((vocabulary_size, EMBEDDING_DIM))
for word, i in t.word_index.items():
try:
word_sent = Sentence(word)
en_embedding.embed(word_sent)
embedding_vector = word_sent[0].embedding.cpu().detach().numpy()
embedding_matrix[i] = embedding_vector
except KeyError:
embedding_matrix[i]=np.random.normal(0,np.sqrt(0.25),EMBEDDING_DIM)
embedding_layer = Embedding(vocabulary_size,
EMBEDDING_DIM,
weights=[embedding_matrix],
trainable=True)
else:
if multi_label:
mlb = MultiLabelBinarizer()
list_of_mlb_labels = mlb.fit_transform(list_of_labels)
X_train, X_val, Y_train, Y_val, Emb_train, Emb_val = train_test_split(np.asarray(list_of_sentences), np.asarray(list_of_mlb_labels), np.asarray(list_of_embeddings), test_size = 0.30, stratify = list_of_labels, random_state=42)
else:
X_train, X_val, Y_train, Y_val, Emb_train, Emb_val = train_test_split(np.asarray(list_of_sentences), np.asarray(list_of_labels), np.asarray(list_of_embeddings), test_size = 0.33, stratify = list_of_labels, random_state=42)
#X_train, X_val, Y_train, Y_val, Emb_train, Emb_val = train_test_split(np.asarray(list_of_sentences), np.asarray(list_of_labels), np.asarray(list_of_embeddings), test_size = 0.33, stratify = list_of_labels, random_state=42)
def create_model(optimizer='adam', kernel_initializer='glorot_uniform', epochs = 5):
model = Sequential()
if not learned_emb:
if keras_mode == "CNN":
model.add(Reshape((1, list_of_embeddings[1].size), input_shape = Emb_train.shape[1:])) ##magical fucking stupid keras BS needed for RNN/CNN
model.add(Conv1D(filters=300, kernel_size=1, strides = 5, activation='relu')) ##works now
model.add(Flatten()) ##need this with Conv1D
#model.add(GlobalMaxPooling1D()) ##pooling would go here instead of flattening if you're into that
model.add(Dense(len(np.unique(Y_val)),activation='softmax',kernel_initializer=kernel_initializer, use_bias = False))
elif keras_mode == "RNN":
model.add(Reshape((1, list_of_embeddings[1].size), input_shape = Emb_train.shape[1:]))
if attention:
model.add(Bidirectional(GRU(list_of_embeddings[1].size, activation = 'relu', return_sequences = True))) ##this works too - seems to be better for smaller datasets too!
model.add(SeqWeightedAttention())
else:
model.add(Bidirectional(GRU(list_of_embeddings[1].size, activation = 'relu')))
model.add(Dense(len(np.unique(Y_val)),activation='softmax',kernel_initializer=kernel_initializer, use_bias = False))
else: ##for simple MLP models
if not multi_label:
model.add(Dense(list_of_embeddings[1].size, activation='relu',kernel_initializer='he_uniform', use_bias = False))
model.add(Dense(len(np.unique(Y_train)),activation='softmax',kernel_initializer=kernel_initializer, use_bias = False))
else:
model.add(Dense(list_of_embeddings[1].size, activation='relu',kernel_initializer='he_uniform', use_bias = False))
model.add(Dense(Y_train.shape[1] ,activation='sigmoid',kernel_initializer=kernel_initializer, use_bias = True))
else:
model.add(embedding_layer)
model.add(Bidirectional(GRU(EMBEDDING_DIM, return_sequences=False, input_shape=(sequence_length, EMBEDDING_DIM), activation = 'relu')))
model.add(Dense(output_size, activation='softmax'))
if multi_label:
model.compile(loss='binary_crossentropy',optimizer=optimizer, metrics=['accuracy'])
else:
model.compile(loss='categorical_crossentropy',optimizer=optimizer, metrics=['accuracy'])
return model
if keras:
checkpointer = ModelCheckpoint(filepath='/tmp/weights.hdf5', verbose=1, save_best_only=True)
stopper = EarlyStopping(patience = 50, restore_best_weights = True)
model = KerasClassifier(build_fn=create_model, batch_size = 32, epochs = 200, callbacks=[stopper], validation_split = 0.3)
the_model = MultiLabelProbClassifier(model)
#model = SVC(kernel = "rbf", probability = True)
#model = KNeighborsClassifier(n_neighbors=1, metric='cosine', weights = 'distance')
#model = AdaBoostClassifier(n_estimators = 100, random_state = 42)
#model = RandomForestClassifier(n_jobs = -1, n_estimators = 100, max_features = "auto", criterion = "entropy")
#model = MLPClassifier(hidden_layer_sizes=(500,), activation = 'relu', solver = 'adam', verbose = True, max_iter = 100) #early_stopping = True, validation_fraction = 0.3, n_iter_no_change = 100)
if not learned_emb:
pipe = Pipeline([('text2vec', Text2Vec()), ('model', the_model)])
else:
pipe = model
#model.fit(Emb_train, Y_train)
pipe.fit(X_train, Y_train)
pred = pipe.predict(X_val)
te = TextExplainer(random_state=42, n_samples=300, position_dependent=True)
def explain_pred(sentence):
te.fit(sentence, pipe.predict_proba)
t_pred = te.explain_prediction()
#t_pred = te.explain_prediction(top = 20, target_names=["ANB", "CAP", "ECON", "EDU", "ENV", "EX", "FED", "HEG", "NAT", "POL", "TOP", "ORI", "QER","COL","MIL", "ARMS", "THE", "INTHEG", "ABL", "FEM", "POST", "PHIL", "ANAR", "OTHR"])
txt = format_as_text(t_pred)
html = format_as_html(t_pred)
html_file = open("latest_prediction.html", "a+")
html_file.write(html)
html_file.close()
print(te.metrics_)
if not multi_label:
print(accuracy_score(Y_val, pred))
labels = np.unique(Y_train)
conf = confusion_matrix(Y_val, pred, labels=labels)
print(pd.DataFrame(conf, index=labels, columns=labels))
predicts = pipe.predict(X_val)
probs = pipe.predict_proba(X_val)
a_df = pd.DataFrame(probs, index=Y_val, columns=labels)
a_df[a_df.eq(0)] = np.nan
print(a_df.round(2))
misclass = get_misclass()
print("misclassified examples!!!")
print(get_misclass())
print(a_df.iloc[get_misclass()].round(2))
else:
#print(mlb.classes_)
predicts = pipe.predict(X_val[0])
myvec = Text2Vec()
#print(pipe.named_steps['one_hot_encoder'].inverse_transform(myvec.transform(X_val)))
probs = pipe.predict_proba(X_val[0:2])
#explain_pred(str(X_val[0]))
#a_df = pd.DataFrame(probs, index=Y_val, columns=labels)
#a_df[a_df.eq(0)] = np.nan
#print(a_df.round(2))
print(mlb.classes_)
#print(predicts)
print(np.around(probs, decimals = 2))
if keras:
pipe.named_steps['model'].model.save('keras_model.h5')
pipe.named_steps['model'].model = None
joblib.dump(pipe, 'saved_card_classification.pkl')
print("Model Dumped!!!!")