-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
95 lines (71 loc) · 2.32 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import random
import json
from tensorflow.keras.models import load_model
# from keras.models import load_model
import numpy as np
import pickle
import nltk
nltk.download('punkt')
nltk.download('wordnet')
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
THRESHOLD = 0.25
model = load_model('/code/resources/models/chatbot_model.h5')
intents = json.loads(open('/code/resources/data/intents.json').read())
words = pickle.load(open('/code/resources/pickles/words.pkl', 'rb'))
classes = pickle.load(open('/code/resources/pickles/classes.pkl', 'rb'))
print('RESOURCES LOADED SUCESSFULLY!')
# applying lemmmatization
def clean_up_sentence(sentence):
sentence_words = nltk.word_tokenize(sentence)
sentence_words = [lemmatizer.lemmatize(
word.lower()) for word in sentence_words]
return sentence_words
# creating bag_of_words
def bag_of_words(sentence, words, show_details=True):
sentence_words = clean_up_sentence(sentence)
bag = [0] * len(words)
for s in sentence_words:
for i, w in enumerate(words):
if w == s:
bag[i] = 1
if show_details:
print(f"found in bag: {w}")
return (np.array(bag))
def predict_class(sentence, model):
p = bag_of_words(sentence, words, show_details=False)
res = model.predict(np.array([p]))[0]
results = [[i, r] for i, r in enumerate(res) if r > THRESHOLD]
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append(
{
"intent": classes[r[0]],
"probability": str(r[1])
}
)
return return_list
def get_responses(ints, intents_json):
tag = ints[0]['intent']
list_of_intents = intents_json['intents']
for i in list_of_intents:
if i['tag'] == tag:
result = random.choice(i['responses'])
break
return result
def chatbot_response(message):
ints = predict_class(message, model)
res = get_responses(ints, intents)
return res
def main():
while True:
inp = input('You:\t')
if inp == 'exit':
break
else:
chatbot_result = chatbot_response(inp)
print(f'bot:\t{chatbot_result}')
if __name__ == '__main__':
print('TYPE exit TO QUIT!')
main()