-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtraining_engine.py
573 lines (506 loc) · 20.6 KB
/
training_engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
from typing import Dict, Tuple, List, Union
from pathlib import Path
from random import random, shuffle
from tqdm.auto import tqdm
import numpy as np
from torch import optim
from torch.nn import Module
from torch import Tensor
from torch.nn import MSELoss
from torch.nn.functional import sigmoid
from torch_geometric.loader import DataLoader
from torch_geometric.data import Batch, Data
from torch_geometric.utils import to_networkx
from torch.optim import Optimizer
import torch
from torchmetrics import Metric
from torchmetrics import (
Accuracy,
Precision,
Recall,
F1Score,
ConfusionMatrix,
)
from torch.utils.tensorboard import SummaryWriter
from utils.common import capitalize_string
from utils.toolbox import (
DataBatchDecomposer,
RankLossFunction,
ProblemType,
)
from utils.experiment import DEVICE
from algorithm_modeling import Action, State, Game, get_stateData
from model_builder import NiceModel, Task
class PreTrainer:
@staticmethod
def calc_metrics(
metrics: Dict[str, Metric], concatenated_logits: Tensor, databatch: Batch
):
differencesList = DataBatchDecomposer.get_differencesList_from_databatch(
databatch
)
logitsList = DataBatchDecomposer.get_logitsList_from_databatch(
concatenated_logits, databatch
)
for pred_logits, true_differences in zip(logitsList, differencesList):
for metricName in metrics:
pred_probs = sigmoid(pred_logits.squeeze())
pred_differences = torch.where(
pred_probs >= 0.5, torch.tensor(1), torch.tensor(0)
)
metrics[metricName](pred_differences, true_differences)
@staticmethod
def setup_metrics(
device: torch.device = DEVICE,
) -> Dict[str, Metric]:
with torch.device(device):
# Setup Metrics
metrics = {
"accuracy": Accuracy(task="binary"),
"recall": Recall(task="binary"),
"precision": Precision(task="binary"),
"f1score": F1Score(task="binary"),
"confmat": ConfusionMatrix(task="binary"),
}
return metrics
@staticmethod
def train_step(
model: Module,
dataloader: DataLoader,
lossFn: RankLossFunction,
optimizer: Optimizer,
metrics: Dict[str, Metric],
epoch: int,
device: torch.device = DEVICE,
) -> Tuple[float, Dict[str, Tensor]]:
"""Trains a PyTorch model for a single epoch.
@param model: (Module) A PyTorch model to be trained.
@param dataloader: (DataLoader[Graph]) A DataLoader instance for the model to be trained on.
@param lossFn: (RankLossFunction) A Specific PyTorch loss function to minimize.
@param optimizer: (Optimizer) A PyTorch optimizer to help minimize the loss function.
@param metrics: (List[Metric]) A list of metrics.
@param epoch: (int) A number indicating which epoch is being trained.
@param device: (device) A target device to compute on (e.g. "cuda", "mps", "cpu").
@return train_loss, train_metrics: (float, dict) A tuple of training loss and training metrics.
"""
# 启用模型的train模式
model.train()
# 初始化train_loss与train_metrics
train_loss = 0
for metricName in metrics:
metrics[metricName].reset()
# Loop through data loader data batches
for databatch in tqdm(
dataloader,
total=len(dataloader),
desc=f"Training(Epoch{epoch})",
leave=False,
):
# Send data to target device
databatch = databatch.to(device)
# 1. Forward pass
concatenated_logits = model(databatch)
# 2. Calculate and accumulate loss
loss = lossFn(concatenated_logits, databatch)
train_loss += loss.item()
# 3. Optimizer zero grad
optimizer.zero_grad()
# 4. Loss backward
loss.backward()
# 5. Optimizer step
optimizer.step()
# Calculate and accumulate metric across all batches
PreTrainer.calc_metrics(metrics, concatenated_logits, databatch)
train_loss = train_loss / len(dataloader)
train_metrics = {}
for metricName in metrics:
train_metrics[metricName] = metrics[metricName].compute()
return train_loss, train_metrics
@staticmethod
def val_step(
model: Module,
dataloader: DataLoader,
lossFn: RankLossFunction,
metrics: Dict[str, Metric],
epoch: int,
device: torch.device = DEVICE,
) -> Tuple[float, Dict[str, Tensor]]:
"""Validates a PyTorch model for a single epoch.
Turns a target PyTorch model to "eval" mode and then performs
a forward pass on a validation dataset.
Args:
model: A PyTorch model to be validated.
dataloader: A DataLoader instance for the model to be validated on.
lossFn: A Specific PyTorch loss function to calculate loss on the validation data.
metrics: A dictionary of metric names to their corresponding metric.
epoch: A number indicating which epoch is being trained.
device: A target device to compute on (e.g. "cuda", "mps", "cpu").
Returns:
A tuple of validation loss and validation metrics.
In the form (val_loss, val_metrics).
"""
# Put model in eval mode
model.eval()
# Setup val loss and val metrics values
val_loss = 0
for metricName in metrics:
metrics[metricName].reset()
# Turn on inference context manager
with torch.inference_mode():
# Loop through DataLoader batches
for databatch in tqdm(
dataloader,
total=len(dataloader),
desc=f"Validating(Epoch{epoch})",
leave=False,
):
# Send data to target device
databatch = databatch.to(device)
# 1. Forward pass
concatenated_logits = model(databatch)
# 2. Calculate and accumulate loss
loss = lossFn(concatenated_logits, databatch)
val_loss += loss.item()
# Calculate and accumulate metric across all batches
PreTrainer.calc_metrics(metrics, concatenated_logits, databatch)
val_loss = val_loss / len(dataloader)
val_metrics = {}
for metricName in metrics:
val_metrics[metricName] = metrics[metricName].compute()
return val_loss, val_metrics
@staticmethod
def train(
model: Module,
train_dataloader: DataLoader,
val_dataloader: DataLoader,
optimizer: Optimizer,
lossFn: RankLossFunction,
epochNum: int,
writer: SummaryWriter = None,
device: torch.device = DEVICE,
verbose: bool = False,
) -> Dict[str, List]:
"""Trains and Validates a PyTorch model.
Passes a target PyTorch models through train_step() and val_step()
functions for a number of epochs, training and validating the model
in the same epoch loop.
Calculates, prints and stores evaluation metrics throughout.
Args:
model: A PyTorch model to be trained and validated.
train_dataloader: A DataLoader instance for the model to be trained on.
val_dataloader: A DataLoader instance for the model to be validated on.
optimizer: A PyTorch optimizer to help minimize the loss function.
lossFn: A PyTorch loss function to calculate loss on both datasets.
epochNum: An integer indicating how many epochs to train for.
writer: A SummaryWriter instance to write training and validation metrics to.
device: A target device to compute on (e.g. "cuda", "mps", "cpu").
verbose: A boolean indicating whether to print training and validation metrics.
Returns:
A dictionary of training and validating loss as well as training and
validating metrics. Each metric has a value in a list for
each epoch.
In the form:
{
train_loss: [...],
train_metrics: [...],
val_loss: [...],
val_metrics: [...]
}
"""
metrics = PreTrainer.setup_metrics(device=device)
# Create empty result dictionary
result = {
"train_loss": [],
"train_metrics": [],
"val_loss": [],
"val_metrics": [],
}
# Make sure model on target device
model.to(device)
# Loop through training and validating steps for a number of epochs
for epoch in tqdm(range(epochNum), desc=f"Total Epochs", leave=True):
train_loss, train_metrics = PreTrainer.train_step(
model=model,
dataloader=train_dataloader,
lossFn=lossFn,
optimizer=optimizer,
metrics=metrics,
epoch=epoch,
device=device, # NOTE: 实际上这个device是用来迁移数据的
)
val_loss, val_metrics = PreTrainer.val_step(
model=model,
dataloader=val_dataloader,
lossFn=lossFn,
metrics=metrics,
epoch=epoch,
device=device, # NOTE: 实际上这个device是用来迁移数据的
)
if verbose:
print(f"\nEpoch {epoch+1}: ")
print(
f"\tloss => train_loss: {train_loss:.4f} | val_loss: {val_loss:.4f}"
)
for metricName in train_metrics:
if metricName == "confmat":
print(
f"\t{metricName} => train_{metricName}: {train_metrics[metricName].view(-1)} | val_{metricName}: {val_metrics[metricName].view(-1)}"
)
else:
print(
f"\t{metricName} => train_{metricName}: {train_metrics[metricName]:.4f} | val_{metricName}: {val_metrics[metricName]:.4f}"
)
# Update result dictionary
result["train_loss"].append(train_loss)
result["train_metrics"].append(train_metrics)
result["val_loss"].append(val_loss)
result["val_metrics"].append(val_metrics)
### Experiment tracking ###
if writer:
# See SummaryWriter documentation
writer.add_scalars(
main_tag="Loss",
tag_scalar_dict={"train_loss": train_loss, "val_loss": val_loss},
global_step=epoch,
)
for metricName in metrics:
if metricName == "confmat":
continue
writer.add_scalars(
main_tag=capitalize_string(metricName),
tag_scalar_dict={
f"train_{metricName}": train_metrics[metricName],
f"val_{metricName}": val_metrics[metricName],
},
global_step=epoch,
)
# Close the writer
writer.close()
# Return the filled result at the end of the epochs
return result
@staticmethod
def evaluate(
model: Module,
test_dataloader: DataLoader,
device: torch.device = DEVICE,
):
"""给出模型的最终评价(accuracy, recall, precision, f1score, confusion_matrix)"""
# Setup Metrics
metrics = PreTrainer.setup_metrics(device=device)
# Make sure model on target device
model.to(device)
# Put model in eval mode
model.eval()
# Turn on inference context manager
with torch.inference_mode():
# Loop through DataLoader batches
for databatch in test_dataloader:
# Send data to target device
databatch = databatch.to(device)
# Forward pass
concatenated_logits = model(databatch)
# Calculate and accumulate metrics
PreTrainer.calc_metrics(metrics, concatenated_logits, databatch)
result = {}
for metricName in metrics:
result[metricName] = metrics[metricName].compute()
return result
class Trainer:
def __init__(
self,
model: NiceModel,
dataloaders: Tuple[DataLoader],
roundNum: int = 10,
greedyRate: float = 0.05,
discountRate: float = 0.99,
learningRate: float = 1e-3,
weightDecay: float = 1e-3,
problemType: ProblemType = ProblemType.CN,
verbose: bool = False,
):
self.model = model
if len(dataloaders) != 3:
raise ValueError("datloaders参数应该由三个Dataloader组成")
self.train_dataloader, self.val_dataloader, self.test_dataloader = dataloaders
self.roundNum = roundNum
self.greedyRate = greedyRate
self.discountRate = discountRate
self.learningRate = learningRate
self.weightDecay = weightDecay
self.problemType = problemType
self.verbose = verbose
# 固定embedding_layer
for param in self.model.embedding_layer.parameters():
param.requires_grad = False
# 设置optimizer与lossFn
self.optimizer = optim.Adam(
model.parameters(), lr=self.learningRate, weight_decay=self.weightDecay
)
self.lossFn = MSELoss()
def init_game(self, databatch: Batch):
if len(databatch) == 1:
# 只包含一个数据
single_data = databatch[0]
single_graph = to_networkx(single_data, to_undirected=True)
self.currentTrainOriginData = single_data
return Game(
single_graph,
roundNum=self.roundNum,
problemType=self.problemType,
verbose=self.verbose,
)
else:
# 包含多个数据
raise ValueError("只支持含有一个data的databatch")
def train(self):
for ind, databatch in tqdm(
enumerate(self.train_dataloader),
total=len(self.train_dataloader),
desc=f"Training",
leave=True,
):
databatch = databatch.to(self.model.device)
self.game = self.init_game(databatch)
self.train_databatch(ind)
def get_state(self):
"""返回游戏的当前状态"""
return self.game.round.state
def get_stateData(self, oldState: State, require_grad: bool = False):
"""获得状态的对应data[修改原始data的edge_index]"""
stateData = get_stateData(oldState, self.currentTrainOriginData, require_grad)
return stateData
def get_action(self, state: State, databatch_index: int) -> Action:
"""根据神经网络,选择最佳的action【要排除已经去掉的action】
NOTE: tradeoff exploration / exploitation
NOTE: 当前只支持DISCONNECT动作类型
"""
actionType = Action.ActionType.DISCONNECT
if random() < self.greedyRate / np.log(databatch_index + np.e):
# : 随机数小于greedyRate时, 使用随机生成的action【贪心程度应该从大到小】
action = state.get_random_action(actionType)
else:
# : 随机数不小于greedyRate时, 使用模型选择action
# 获得当前的currentData
currentData = self.get_stateData(state)
# 获得当前state下,每个action的value
values: Tensor = self.model(
Batch.from_data_list([currentData]), task=Task.VALUE
)
# 选择state下可选的value最高的action
action = state.get_best_action(values.squeeze(), actionType)
return action
def train_step(
self,
oldState: State,
reward: float,
action: Action,
newState: State,
):
self.model.train()
oldData = self.get_stateData(oldState, require_grad=True)
newData = self.get_stateData(newState, require_grad=True)
# 此时获得的values是oldState所有action的values
values: Tensor = self.model(Batch.from_data_list([oldData]), task=Task.VALUE)
# 找到当前action中targetNodeIndex对应的value,即Q(s,a)的预测值
pred_Q = values[action.targetNodeIndex].squeeze()
# Q(s, a)的真实值使用$$Q(s, a)=R(s)+\gamma \max _{a'} Q(s', a')$$
real_Q = reward + self.discountRate * torch.max(
self.model(Batch.from_data_list([newData]), task=Task.VALUE)
)
loss: Tensor = self.lossFn(pred_Q, real_Q)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def train_databatch(self, databatch_index: int):
while True:
# 获得oldState
oldState = self.get_state()
# 根据oldState获得action
action = self.get_action(oldState, databatch_index)
# 执行action获得reward, newState等
reward, roundDone, gameDone, _ = self.game.play_step(action)
newState = self.get_state()
# 存储步骤
self.game.remember(oldState, reward, action, newState)
if roundDone:
# 整个memory的数据,进行一次完整训练(本质上还是train_short_menory)
shuffle(self.game.memory)
for step in self.game.memory:
# 单次训练
self.train_step(*step)
if gameDone:
# 结束当前的game
break
if __name__ == "__main__":
from torch import optim
from utils.experiment import create_writer
from model_builder import NiceModel
from model_handler import get_modelParamDict_example
from utils.common import colored_print
from utils.experiment import set_seeds
from data_processing import DatasetLoader
from data_loading import create_dataloaders
from utils.toolbox import RankLossFunction
def test_pretrain(seed: int = 38, instanceNum: int = 1, maxLength: int = 100):
set_seeds(seed)
# 准备数据
dataset = DatasetLoader.load_synthetic_dataset(
f"SyntheticDataset-N{instanceNum}", problemType=ProblemType.CN
)
train_dataloader, val_dataloader, test_dataloader = create_dataloaders(
dataset,
(0.6, 0.3, 0.1),
max_length=maxLength,
shuffles=[False, False, False],
seed=seed,
)
# 准备模型
model = NiceModel(**get_modelParamDict_example())
# 准备训练
lossFn = RankLossFunction(verbose=False)
optimizer = optim.Adam(model.parameters(), lr=0.001)
writer = create_writer("test_experiment", targetDir=Path("logs"))
# 训练与评估
train_result = PreTrainer.train(
model=model,
train_dataloader=train_dataloader,
val_dataloader=val_dataloader,
lossFn=lossFn,
optimizer=optimizer,
epochNum=5,
writer=writer,
verbose=True,
)
evaluate_result = PreTrainer.evaluate(model, test_dataloader)
print(train_result)
print(evaluate_result)
def test_train(instanceNum=1, seed=40):
set_seeds(seed)
model = NiceModel(**get_modelParamDict_example())
dataset = DatasetLoader.load_synthetic_dataset(
f"SyntheticDataset-N{instanceNum}", problemType=ProblemType.CN
)
train_dataloader, val_dataloader, test_dataloader = create_dataloaders(
dataset,
(0.6, 0.3, 0.1),
batch_size=1,
shuffles=[False, False, False],
seed=seed,
)
trainer = Trainer(
model,
(train_dataloader, val_dataloader, test_dataloader),
roundNum=2,
greedyRate=0.05,
discountRate=0.99,
learningRate=1e-3,
problemType=ProblemType.CN,
verbose=True,
)
trainer.train()
colored_print("单元测试: pretrain...")
test_pretrain()
colored_print("=" * 80)
colored_print("单元测试: train...")
test_train()
colored_print("=" * 80)