-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathron_eval.py
597 lines (496 loc) · 28.7 KB
/
ron_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
import tensorflow as tf
from tensorflow.python import debug as tf_debug
from tensorflow.python.ops import control_flow_ops
import time
from datetime import datetime
import numpy as np
import pickle
import os
import xml.etree.ElementTree as ET
from scipy.misc import imread, imsave, imshow, imresize
from datasets import dataset_factory
from datasets import voc_eval
from datasets import pascalvoc_2007
from datasets import pascalvoc_common
from nets import nets_factory
from nets import ssd_common
from preprocessing import preprocessing_factory
import tf_utils
import tf_extended as tfe
from tf_extended import tensors as tfe_tensors
import draw_toolbox
slim = tf.contrib.slim
# export CUDA_VISIBLE_DEVICES=''
DATA_FORMAT = 'NHWC' #'NCHW'
# =========================================================================== #
# General Flags.
# =========================================================================== #
tf.app.flags.DEFINE_string(
'test_dir', './eval_logs/',
'Directory where checkpoints and event logs are written to.')
tf.app.flags.DEFINE_integer(
'num_readers', 2,
'The number of parallel readers that read data from the dataset.')
tf.app.flags.DEFINE_integer(
'num_preprocessing_threads', 2,
'The number of threads used to create the batches.')
tf.app.flags.DEFINE_integer(
'num_cpu_threads', 6,
'The number of cpu cores used to train.')
tf.app.flags.DEFINE_float(
'gpu_memory_fraction', 1., 'GPU memory fraction to use.')
tf.app.flags.DEFINE_integer(
'log_every_n_steps', 5,
'The frequency with which logs are print.')
# =========================================================================== #
# Dataset Flags.
# =========================================================================== #
tf.app.flags.DEFINE_string(
'dataset_name', 'pascalvoc_2007', 'The name of the dataset to load.')
tf.app.flags.DEFINE_integer(
'num_classes', 21, 'Number of classes to use in the dataset.')
tf.app.flags.DEFINE_string(
'dataset_split_name', 'test', 'The name of the train/test split.')
tf.app.flags.DEFINE_string(
'dataset_dir', '../PASCAL/tfrecords/VOC2007/TF_test/', 'The directory where the dataset files are stored.')
tf.app.flags.DEFINE_integer(
'labels_offset', 0,
'An offset for the labels in the dataset. This flag is primarily used to '
'evaluate the VGG and ResNet architectures which do not use a background '
'class for the ImageNet dataset.')
tf.app.flags.DEFINE_string(
'model_name', 'ron_320_vgg', 'The name of the architecture to train.')
tf.app.flags.DEFINE_string(
'preprocessing_name', None, 'The name of the preprocessing to use. If left '
'as `None`, then the model_name flag is used.')
tf.app.flags.DEFINE_float(
'moving_average_decay', None,
'The decay to use for the moving average.'
'If left as None, then moving averages are not used.')
tf.app.flags.DEFINE_float(
'select_threshold', 0.6, 'Class-specific confidence score threshold for selecting a box.')
tf.app.flags.DEFINE_float(
'nms_threshold', 0.4, 'Matching threshold in NMS algorithm.')
tf.app.flags.DEFINE_float(
'objectness_thres', 0.95, 'threshold for the objectness to indicate the exist of object in that location.')
tf.app.flags.DEFINE_integer(
'nms_topk_percls', 10, 'Number of object for each class to keep after NMS.')
tf.app.flags.DEFINE_integer(
'nms_topk', 20, 'Number of total object to keep after NMS.')
# =========================================================================== #
# Fine-Tuning Flags.
# =========================================================================== #
tf.app.flags.DEFINE_string(
'checkpoint_path', './model/model.ckpt-120055', #None, #'./checkpoints/ssd_300_vgg.ckpt',
'The path to a checkpoint from which to fine-tune.')
tf.app.flags.DEFINE_string(
'checkpoint_model_scope', None,
'Model scope in the checkpoint. None if the same as the trained model.')
tf.app.flags.DEFINE_string(
'checkpoint_exclude_scopes', None,
'Comma-separated list of scopes of variables to exclude when restoring '
'from a checkpoint.')
tf.app.flags.DEFINE_boolean(
'ignore_missing_vars', False,
'When restoring a checkpoint would ignore missing variables.')
FLAGS = tf.app.flags.FLAGS
def flaten_predict(predictions, objness_pred, localisations):
predictions_shape = tfe.get_shape(predictions[0], 5)
batch_size = predictions_shape[0]
num_classes = predictions_shape[-1]
if batch_size > 1:
raise ValueError('only batch_size 1 is supported.')
flaten_pred = []
flaten_labels = []
flaten_objness = []
flaten_locations = []
flaten_scores = []
for i in range(len(predictions)):
flaten_pred.append(tf.reshape(predictions[i], [batch_size, -1, num_classes]))
flaten_objness.append(tf.reshape(objness_pred[i], [batch_size, -1]))
cls_pred = tf.expand_dims(flaten_objness[i], axis=-1) * flaten_pred[i]
flaten_scores.append(tf.reshape(cls_pred, [batch_size, -1, num_classes]))
#flaten_scores.append(tf.reshape(tf.reduce_max(cls_pred, -1), [batch_size, -1]))
flaten_labels.append(tf.reshape(tf.argmax(cls_pred, -1), [batch_size, -1]))
flaten_locations.append(tf.reshape(localisations[i], [batch_size, -1, 4]))
# assume batch_size is always 1
total_scores = tf.squeeze(tf.concat(flaten_scores, 1), 0)
total_objness = tf.squeeze(tf.concat(flaten_objness, 1), 0)
total_locations = tf.squeeze(tf.concat(flaten_locations, 1), 0)
total_labels = tf.squeeze(tf.concat(flaten_labels, 1), 0)
# remove bboxes that are not foreground
non_background_mask = tf.greater(total_labels, 0)
# remove bboxes that have scores lower than select_threshold
#bbox_mask = tf.logical_and(non_background_mask, tf.greater(total_scores, FLAGS.select_threshold))
# total_objness = tf.Print(total_objness, [total_objness])
bbox_mask = tf.logical_and(non_background_mask, tf.greater(total_objness, FLAGS.objectness_thres))
return tf.boolean_mask(total_scores, bbox_mask), tf.boolean_mask(total_labels, bbox_mask), tf.boolean_mask(total_locations, bbox_mask)
def tf_bboxes_nms(scores, labels, bboxes, nms_threshold = 0.5, keep_top_k = 200, mode = 'union', scope=None):
with tf.name_scope(scope, 'tf_bboxes_nms', [scores, labels, bboxes]):
# get the cls_score for the most-likely class
scores = tf.reduce_max(scores, -1)
# apply threshold
bbox_mask = tf.greater(scores, FLAGS.select_threshold)
scores, labels, bboxes = tf.boolean_mask(scores, bbox_mask), tf.boolean_mask(labels, bbox_mask), tf.boolean_mask(bboxes, bbox_mask)
num_anchors = tf.shape(scores)[0]
def nms_proc(scores, labels, bboxes):
# sort all the bboxes
scores, idxes = tf.nn.top_k(scores, k = num_anchors, sorted = True)
labels, bboxes = tf.gather(labels, idxes), tf.gather(bboxes, idxes)
ymin = bboxes[:, 0]
xmin = bboxes[:, 1]
ymax = bboxes[:, 2]
xmax = bboxes[:, 3]
vol_anchors = (xmax - xmin) * (ymax - ymin)
nms_mask = tf.cast(tf.ones_like(scores, dtype=tf.int8), tf.bool)
keep_mask = tf.cast(tf.zeros_like(scores, dtype=tf.int8), tf.bool)
def safe_divide(numerator, denominator):
return tf.where(tf.greater(denominator, 0), tf.divide(numerator, denominator), tf.zeros_like(denominator))
def get_scores(bbox, nms_mask):
# the inner square
inner_ymin = tf.maximum(ymin, bbox[0])
inner_xmin = tf.maximum(xmin, bbox[1])
inner_ymax = tf.minimum(ymax, bbox[2])
inner_xmax = tf.minimum(xmax, bbox[3])
h = tf.maximum(inner_ymax - inner_ymin, 0.)
w = tf.maximum(inner_xmax - inner_xmin, 0.)
inner_vol = h * w
this_vol = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
if mode == 'union':
union_vol = vol_anchors - inner_vol + this_vol
elif mode == 'min':
union_vol = tf.minimum(vol_anchors, this_vol)
else:
raise ValueError('unknown mode to use for nms.')
return safe_divide(inner_vol, union_vol) * tf.cast(nms_mask, tf.float32)
def condition(index, nms_mask, keep_mask):
return tf.logical_and(tf.reduce_sum(tf.cast(nms_mask, tf.int32)) > 0, tf.less(index, keep_top_k))
def body(index, nms_mask, keep_mask):
# at least one True in nms_mask
indices = tf.where(nms_mask)[0][0]
bbox = bboxes[indices]
this_mask = tf.one_hot(indices, num_anchors, on_value=False, off_value=True, dtype=tf.bool)
keep_mask = tf.logical_or(keep_mask, tf.logical_not(this_mask))
nms_mask = tf.logical_and(nms_mask, this_mask)
nms_scores = get_scores(bbox, nms_mask)
nms_mask = tf.logical_and(nms_mask, nms_scores < nms_threshold)
return [index+1, nms_mask, keep_mask]
index = 0
[index, nms_mask, keep_mask] = tf.while_loop(condition, body, [index, nms_mask, keep_mask])
return tf.boolean_mask(scores, keep_mask), tf.boolean_mask(labels, keep_mask), tf.boolean_mask(bboxes, keep_mask)
return tf.cond(tf.less(num_anchors, 1), lambda: (scores, labels, bboxes), lambda: nms_proc(scores, labels, bboxes))
def tf_bboxes_nms_by_class(scores, labels, bboxes, nms_threshold = 0.5, keep_top_k = 200, mode = 'min', scope=None):
with tf.name_scope(scope, 'tf_bboxes_nms_by_class', [scores, labels, bboxes]):
num_anchors = tf.shape(scores)[0]
def nms_proc(scores, labels, bboxes):
# sort all the bboxes
scores, idxes = tf.nn.top_k(scores, k = num_anchors, sorted = True)
labels, bboxes = tf.gather(labels, idxes), tf.gather(bboxes, idxes)
ymin = bboxes[:, 0]
xmin = bboxes[:, 1]
ymax = bboxes[:, 2]
xmax = bboxes[:, 3]
vol_anchors = (xmax - xmin) * (ymax - ymin)
nms_mask = tf.cast(tf.ones_like(scores, dtype=tf.int8), tf.bool)
nms_mask = tf.logical_and(nms_mask, tf.greater(scores, FLAGS.select_threshold))
keep_mask = tf.cast(tf.zeros_like(scores, dtype=tf.int8), tf.bool)
def safe_divide(numerator, denominator):
return tf.where(tf.greater(denominator, 0), tf.divide(numerator, denominator), tf.zeros_like(denominator))
def get_scores(bbox, nms_mask):
# the inner square
inner_ymin = tf.maximum(ymin, bbox[0])
inner_xmin = tf.maximum(xmin, bbox[1])
inner_ymax = tf.minimum(ymax, bbox[2])
inner_xmax = tf.minimum(xmax, bbox[3])
h = tf.maximum(inner_ymax - inner_ymin, 0.)
w = tf.maximum(inner_xmax - inner_xmin, 0.)
inner_vol = h * w
this_vol = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
if mode == 'union':
union_vol = vol_anchors - inner_vol + this_vol
elif mode == 'min':
union_vol = tf.minimum(vol_anchors, this_vol)
else:
raise ValueError('unknown mode to use for nms.')
return safe_divide(inner_vol, union_vol) * tf.cast(nms_mask, tf.float32)
def condition(index, nms_mask, keep_mask):
return tf.logical_and(tf.reduce_sum(tf.cast(nms_mask, tf.int32)) > 0, tf.less(index, keep_top_k))
def body(index, nms_mask, keep_mask):
# at least one True in nms_mask
indices = tf.where(nms_mask)[0][0]
bbox = bboxes[indices]
this_mask = tf.one_hot(indices, num_anchors, on_value=False, off_value=True, dtype=tf.bool)
this_keep_mask = tf.one_hot(idxes[indices], num_anchors, on_value=True, off_value=False, dtype=tf.bool)
keep_mask = tf.logical_or(keep_mask, this_keep_mask)
nms_mask = tf.logical_and(nms_mask, this_mask)
nms_scores = get_scores(bbox, nms_mask)
nms_mask = tf.logical_and(nms_mask, nms_scores < nms_threshold)
return [index+1, nms_mask, keep_mask]
index = 0
[index, nms_mask, keep_mask] = tf.while_loop(condition, body, [index, nms_mask, keep_mask])
return keep_mask
def nms_by_cls_proc(scores, labels, bboxes):
total_keep_mask = tf.map_fn(lambda _scores: nms_proc(_scores, labels, bboxes),
tf.transpose(scores, perm=[1, 0]), parallel_iterations=10,
back_prop=False,
swap_memory=False,
dtype=tf.bool,
infer_shape=True)
total_keep_mask = tf.transpose(total_keep_mask, perm=[1, 0])
# scores in the keep places
keep_scores = scores * tf.cast(total_keep_mask, scores.dtype)
# get the max one in case one bbox is kept twice for different classes
max_mask_scores = tf.reduce_max(keep_scores, -1)
new_labels = tf.argmax(keep_scores, -1)
# ignore bboxes those not been kept
keep_mask = max_mask_scores > 0.
return tf.boolean_mask(max_mask_scores, keep_mask), tf.boolean_mask(new_labels, keep_mask), tf.boolean_mask(bboxes, keep_mask)
return tf.cond(tf.less(num_anchors, 1), lambda: (scores, labels, bboxes), lambda: nms_by_cls_proc(scores, labels, bboxes))
def tf_bboxes_nms_by_class_v1(scores, labels, bboxes, nms_threshold = 0.5, keep_top_k = 200, mode = 'min', scope=None):
with tf.name_scope(scope, 'tf_bboxes_nms_by_class', [scores, labels, bboxes]):
scores = tf.reduce_max(scores, -1)
bbox_mask = tf.greater(scores, FLAGS.select_threshold)
scores, labels, bboxes = tf.boolean_mask(scores, bbox_mask), tf.boolean_mask(labels, bbox_mask), tf.boolean_mask(bboxes, bbox_mask)
num_anchors = tf.shape(scores)[0]
def nms_proc(scores, labels, bboxes):
# sort all the bboxes
scores, idxes = tf.nn.top_k(scores, k = num_anchors, sorted = True)
labels, bboxes = tf.gather(labels, idxes), tf.gather(bboxes, idxes)
ymin = bboxes[:, 0]
xmin = bboxes[:, 1]
ymax = bboxes[:, 2]
xmax = bboxes[:, 3]
vol_anchors = (xmax - xmin) * (ymax - ymin)
total_keep_mask = tf.cast(tf.zeros_like(scores, dtype=tf.int8), tf.bool)
def safe_divide(numerator, denominator):
return tf.where(tf.greater(denominator, 0), tf.divide(numerator, denominator), tf.zeros_like(denominator))
def get_scores(bbox, nms_mask):
# the inner square
inner_ymin = tf.maximum(ymin, bbox[0])
inner_xmin = tf.maximum(xmin, bbox[1])
inner_ymax = tf.minimum(ymax, bbox[2])
inner_xmax = tf.minimum(xmax, bbox[3])
h = tf.maximum(inner_ymax - inner_ymin, 0.)
w = tf.maximum(inner_xmax - inner_xmin, 0.)
inner_vol = h * w
this_vol = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
if mode == 'union':
union_vol = vol_anchors - inner_vol + this_vol
elif mode == 'min':
union_vol = tf.minimum(vol_anchors, this_vol)
else:
raise ValueError('unknown mode to use for nms.')
return safe_divide(inner_vol, union_vol) * tf.cast(nms_mask, tf.float32)
def condition(index, nms_mask, keep_mask):
return tf.logical_and(tf.reduce_sum(tf.cast(nms_mask, tf.int32)) > 0, tf.less(index, keep_top_k))
def body(index, nms_mask, keep_mask):
# at least one True in nms_mask
indices = tf.where(nms_mask)[0][0]
bbox = bboxes[indices]
this_mask = tf.one_hot(indices, num_anchors, on_value=False, off_value=True, dtype=tf.bool)
keep_mask = tf.logical_or(keep_mask, tf.logical_not(this_mask))
nms_mask = tf.logical_and(nms_mask, this_mask)
nms_scores = get_scores(bbox, nms_mask)
nms_mask = tf.logical_and(nms_mask, nms_scores < nms_threshold)
return [index+1, nms_mask, keep_mask]
def nms_loop_for_each(cls_index, total_keep_mask):
index = 0
nms_mask = tf.equal(tf.cast(cls_index, tf.int64), labels)
keep_mask = tf.cast(tf.zeros_like(scores, dtype=tf.int8), tf.bool)
[_, _, keep_mask] = tf.while_loop(condition, body, [index, nms_mask, keep_mask])
total_keep_mask = tf.logical_or(total_keep_mask, keep_mask)
return cls_index + 1, total_keep_mask
cls_index = 1
[_, total_keep_mask] = tf.while_loop(lambda cls_index, _: tf.less(cls_index, FLAGS.num_classes), nms_loop_for_each, [cls_index, total_keep_mask])
indices_to_select = tf.where(total_keep_mask)
select_mask = tf.cond(tf.less(tf.shape(indices_to_select)[0], keep_top_k + 1),
lambda: total_keep_mask,
lambda: tf.logical_and(total_keep_mask, tf.range(tf.cast(tf.shape(total_keep_mask)[0], tf.int64), dtype=tf.int64) < indices_to_select[keep_top_k][0]))
return tf.boolean_mask(scores, select_mask), tf.boolean_mask(labels, select_mask), tf.boolean_mask(bboxes, select_mask)
return tf.cond(tf.less(num_anchors, 1), lambda: (scores, labels, bboxes), lambda: nms_proc(scores, labels, bboxes))
def filter_boxes(scores, labels, bboxes, min_size_ratio, image_shape, net_input_shape):
"""Only keep boxes with both sides >= min_size and center within the image.
min_size_ratio is the ratio relative to net input shape
"""
# Scale min_size to match image scale
min_size = tf.maximum(0.0001, min_size_ratio * tf.sqrt(tf.cast(image_shape[0] * image_shape[1], tf.float32) / (net_input_shape[0] * net_input_shape[1])))
ymin = bboxes[:, 0]
xmin = bboxes[:, 1]
ymax = bboxes[:, 2]
xmax = bboxes[:, 3]
ws = xmax - xmin
hs = ymax - ymin
x_ctr = xmin + ws / 2.
y_ctr = ymin + hs / 2.
keep_mask = tf.logical_and(tf.greater(ws, min_size), tf.greater(hs, min_size))
keep_mask = tf.logical_and(keep_mask, tf.greater(x_ctr, 0.))
keep_mask = tf.logical_and(keep_mask, tf.greater(y_ctr, 0.))
keep_mask = tf.logical_and(keep_mask, tf.less(x_ctr, 1.))
keep_mask = tf.logical_and(keep_mask, tf.less(y_ctr, 1.))
return tf.boolean_mask(scores, keep_mask), tf.boolean_mask(labels, keep_mask), tf.boolean_mask(bboxes, keep_mask)
def _process_image(directory, name):
# Read the image file.
#filename = os.path.join(directory, 'JPEGImages/' + name + '.jpg')
filename = os.path.join(directory, 'JPEGImages/' + name + '.jpg')
image_data = imread(filename, mode ='RGB')
# Read the XML annotation file.
filename = os.path.join(directory, 'Annotations/', name + '.xml')
tree = ET.parse(filename)
root = tree.getroot()
# Image shape.
size = root.find('size')
shape = [int(size.find('height').text),
int(size.find('width').text)]
# Find annotations.
bboxes = []
labels = []
for obj in root.findall('object'):
label = obj.find('name').text
labels.append(int(pascalvoc_common.VOC_LABELS[label][0]))
bbox = obj.find('bndbox')
bboxes.append([float(bbox.find('ymin').text) / shape[0],
float(bbox.find('xmin').text) / shape[1],
float(bbox.find('ymax').text) / shape[0],
float(bbox.find('xmax').text) / shape[1]
])
return image_data, shape, labels, bboxes
# =========================================================================== #
# Main eval routine.
# =========================================================================== #
def main(_):
if not FLAGS.dataset_dir:
raise ValueError('You must supply the dataset directory with --dataset_dir')
tf.logging.set_verbosity(tf.logging.INFO)
with tf.Graph().as_default():
# Get the RON network and its anchors.
ron_class = nets_factory.get_network(FLAGS.model_name)
ron_params = ron_class.default_params._replace(num_classes=FLAGS.num_classes)
ron_net = ron_class(ron_params)
ron_shape = ron_net.params.img_shape
ron_anchors = ron_net.anchors(ron_shape)
# Get for RON network: image, labels, bboxes.
# (ymin, xmin, ymax, xmax) fro gbboxes
image_input = tf.placeholder(tf.int32, shape=(None, None, 3))
shape_input = tf.placeholder(tf.int32, shape=(2,))
glabels_input = tf.placeholder(tf.int32, shape=(None,))
gbboxes_input = tf.placeholder(tf.float32, shape=(None, 4))
# Select the preprocessing function.
preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
image_preprocessing_fn = preprocessing_factory.get_preprocessing(
preprocessing_name, is_training=False)
# Pre-processing image, labels and bboxes.
image, glabels, gbboxes, bbox_img = image_preprocessing_fn(image_input, glabels_input, gbboxes_input,
out_shape=ron_shape,
data_format=DATA_FORMAT)
#### DEBUG ####
#image = tf.Print(image, [shape, glabels, gbboxes], message='after preprocess: ', summarize=20)
# Construct RON network.
arg_scope = ron_net.arg_scope(is_training=False, data_format=DATA_FORMAT)
with slim.arg_scope(arg_scope):
predictions, _, objness_pred, _, localisations, _ = ron_net.net(tf.expand_dims(image, axis=0), is_training=False)
bboxes = ron_net.bboxes_decode(localisations, ron_anchors)
flaten_scores, flaten_labels, flaten_bboxes = flaten_predict(predictions, objness_pred, bboxes)
#objness_pred = tf.reduce_max(tf.cast(tf.greater(objness_pred[-1], FLAGS.objectness_thres), tf.float32))
flaten_bboxes = tfe.bboxes.bboxes_clip(bbox_img, flaten_bboxes)
flaten_scores, flaten_labels, flaten_bboxes = filter_boxes(flaten_scores, flaten_labels, flaten_bboxes, 0.03, shape_input, [320., 320.])
#flaten_scores, flaten_labels, flaten_bboxes = tf_bboxes_nms_by_class(flaten_scores, flaten_labels, flaten_bboxes, nms_threshold=FLAGS.nms_threshold, keep_top_k=FLAGS.nms_topk_percls, mode = 'union')
flaten_scores, flaten_labels, flaten_bboxes = tf_bboxes_nms(flaten_scores, flaten_labels, flaten_bboxes, nms_threshold=FLAGS.nms_threshold, keep_top_k=FLAGS.nms_topk, mode = 'union')
# Resize bboxes to original image shape.
flaten_bboxes = tfe.bboxes.bboxes_resize(bbox_img, flaten_bboxes)
# configure model restore
if tf.gfile.IsDirectory(FLAGS.checkpoint_path):
checkpoint_path = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
else:
checkpoint_path = FLAGS.checkpoint_path
tf.logging.info('Restoring model from %s. Ignoring missing vars: %s' % (checkpoint_path, FLAGS.ignore_missing_vars))
if FLAGS.moving_average_decay:
variable_averages = tf.train.ExponentialMovingAverage(FLAGS.moving_average_decay)
variables_to_restore = variable_averages.variables_to_restore()
else:
variables_to_restore = slim.get_variables_to_restore()
init_fn = slim.assign_from_checkpoint_fn(
checkpoint_path,
variables_to_restore,
ignore_missing_vars=FLAGS.ignore_missing_vars)
def wrapper_debug(sess):
sess = tf_debug.LocalCLIDebugWrapperSession(sess, thread_name_filter="MainThread$")
sess.add_tensor_filter("has_inf_or_nan", tf_debug.has_inf_or_nan)
return sess
# no need for specify local_variables_initializer and tables_initializer, Supervisor will do this via default local_init_op
init_op = tf.group(tf.global_variables_initializer())
# Pass the init function to the supervisor.
# - The init function is called _after_ the variables have been initialized by running the init_op.
# - manage summary in current process by ourselves for memory saving
# - no need to specify global_step, supervisor will find this automately
# - initialize order: checkpoint -> local_init_op -> init_op -> init_func
sv = tf.train.Supervisor(logdir=FLAGS.test_dir, init_fn = init_fn, init_op = init_op, summary_op = None, save_model_secs=0)
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction = FLAGS.gpu_memory_fraction)
config = tf.ConfigProto(log_device_placement = False, allow_soft_placement=True, intra_op_parallelism_threads = FLAGS.num_cpu_threads, inter_op_parallelism_threads = FLAGS.num_cpu_threads, gpu_options = gpu_options)
cur_step = 0
tf.logging.info(datetime.now().strftime('Evaluation Start: %Y-%m-%d %H:%M:%S'))
detector_eval = voc_eval.DetectorEvalPascal('../PASCAL/VOC2007TEST/', './eval_logs/', set_type = 'test')
num_images = pascalvoc_2007.SPLITS_TO_SIZES['test']
# all detections are collected into:
# all_boxes[cls][image] = N x 5 array of detections in
# (x1, y1, x2, y2, score)
all_boxes = [[[] for _ in range(num_images)] for _ in range(len(pascalvoc_common.VOC_CLASSES)+1)]
output_dir = detector_eval.output_dir
det_file = os.path.join(output_dir, 'detections.pkl')
with sv.managed_session(config=config) as sess:
while True:
if sv.should_stop():
tf.logging.info('Supervisor emited finish!')
break
if cur_step >= len(detector_eval.image_ids):
break
start_time = time.time()
input_datas = _process_image(detector_eval.image_ids[cur_step][0], detector_eval.image_ids[cur_step][1])
with tf.device('/gpu:0'):
image_, shape_, _, _, scores_, labels_, bboxes_ = sess.run([image, shape_input, glabels, gbboxes, flaten_scores, flaten_labels, flaten_bboxes], feed_dict={image_input: input_datas[0],
shape_input: input_datas[1],
glabels_input: input_datas[2],
gbboxes_input: input_datas[3]})
# print(image_)
# print(len(a),a[0].shape,a[1].shape,a[2].shape,a[3].shape)
# print(len(b),b[0].shape,b[1].shape,b[2].shape,b[3].shape)
# print(len(c),c[0].shape,c[1].shape,c[2].shape,c[3].shape)
print(scores_)
print(labels_)
print(bboxes_)
# print(a)
# print(FLAGS.objectness_thres)
img_to_draw = np.copy(preprocessing_factory.ssd_vgg_preprocessing.np_image_unwhitened(image_))
img_to_draw = draw_toolbox.bboxes_draw_on_img(img_to_draw, labels_, scores_, bboxes_, thickness=2)
imsave('./Debug/{}.jpg'.format(cur_step), img_to_draw)
unique_labels = []
for l in labels_:
if l not in unique_labels:
unique_labels.append(l)
print('unique_labels:', unique_labels)
# skip j = 0, because it's the background class
for j in unique_labels:
mask = labels_ == j
boxes = bboxes_[mask]
# all detections are collected into:
# all_boxes[cls][image] = N x 5 array of detections in
# (x1, y1, x2, y2, score)
boxes[:, 0] *= shape_[0]
boxes[:, 2] *= shape_[0]
boxes[:, 1] *= shape_[1]
boxes[:, 3] *= shape_[1]
boxes[:,[0, 1]] = boxes[:,[1, 0]]
boxes[:,[2, 3]] = boxes[:,[3, 2]]
scores = scores_[mask]
cls_dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
print(cls_dets)
all_boxes[j][cur_step] = cls_dets
time_elapsed = time.time() - start_time
if cur_step % FLAGS.log_every_n_steps == 0:
tf.logging.info('Eval Speed: {:5.3f}sec/image, {}/{}'.format(time_elapsed, cur_step, len(detector_eval.image_ids)))
cur_step += 1
with open(det_file, 'wb') as f:
pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL)
detector_eval.evaluate_detections(all_boxes)
tf.logging.info(datetime.now().strftime('Evaluation Finished: %Y-%m-%d %H:%M:%S'))
if __name__ == '__main__':
tf.app.run()