Skip to content

Latest commit

 

History

History

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ISANet

Interlaced Sparse Self-Attention for Semantic Segmentation

Introduction

Official Repo

Code Snippet

Abstract

In this paper, we present a so-called interlaced sparse self-attention approach to improve the efficiency of the \emph{self-attention} mechanism for semantic segmentation. The main idea is that we factorize the dense affinity matrix as the product of two sparse affinity matrices. There are two successive attention modules each estimating a sparse affinity matrix. The first attention module is used to estimate the affinities within a subset of positions that have long spatial interval distances and the second attention module is used to estimate the affinities within a subset of positions that have short spatial interval distances. These two attention modules are designed so that each position is able to receive the information from all the other positions. In contrast to the original self-attention module, our approach decreases the computation and memory complexity substantially especially when processing high-resolution feature maps. We empirically verify the effectiveness of our approach on six challenging semantic segmentation benchmarks.

Citation

@article{huang2019isa,
  title={Interlaced Sparse Self-Attention for Semantic Segmentation},
  author={Huang, Lang and Yuan, Yuhui and Guo, Jianyuan and Zhang, Chao and Chen, Xilin and Wang, Jingdong},
  journal={arXiv preprint arXiv:1907.12273},
  year={2019}
}

The technical report above is also presented at:

@article{yuan2021ocnet,
  title={OCNet: Object Context for Semantic Segmentation},
  author={Yuan, Yuhui and Huang, Lang and Guo, Jianyuan and Zhang, Chao and Chen, Xilin and Wang, Jingdong},
  journal={International Journal of Computer Vision},
  pages={1--24},
  year={2021},
  publisher={Springer}
}

Results and models

Cityscapes

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
ISANet R-50-D8 512x1024 40000 5.869 2.91 78.49 79.44 config model | log
ISANet R-50-D8 512x1024 80000 5.869 2.91 78.68 80.25 config model | log
ISANet R-50-D8 769x769 40000 6.759 1.54 78.70 80.28 config model | log
ISANet R-50-D8 769x769 80000 6.759 1.54 79.29 80.53 config model | log
ISANet R-101-D8 512x1024 40000 9.425 2.35 79.58 81.05 config model | log
ISANet R-101-D8 512x1024 80000 9.425 2.35 80.32 81.58 config model | log
ISANet R-101-D8 769x769 40000 10.815 0.92 79.68 80.95 config model | log
ISANet R-101-D8 769x769 80000 10.815 0.92 80.61 81.59 config model | log

ADE20K

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
ISANet R-50-D8 512x512 80000 9.0 22.55 41.12 42.35 config model | log
ISANet R-50-D8 512x512 160000 9.0 22.55 42.59 43.07 config model | log
ISANet R-101-D8 512x512 80000 12.562 10.56 43.51 44.38 config model | log
ISANet R-101-D8 512x512 160000 12.562 10.56 43.80 45.4 config model | log

Pascal VOC 2012 + Aug

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
ISANet R-50-D8 512x512 20000 5.9 23.08 76.78 77.79 config model | log
ISANet R-50-D8 512x512 40000 5.9 23.08 76.20 77.22 config model | log
ISANet R-101-D8 512x512 20000 9.465 7.42 78.46 79.16 config model | log
ISANet R-101-D8 512x512 40000 9.465 7.42 78.12 79.04 config model | log