-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathmodels.py
835 lines (730 loc) · 34 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import List, Tuple, Union
from dataclasses import dataclass
from diffusers.utils.outputs import BaseOutput
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.unet_2d_blocks import get_down_block as get_down_block_default
from diffusers.models.resnet import Mish, Upsample2D, Downsample2D, upsample_2d, downsample_2d, partial
from diffusers.models.cross_attention import CrossAttention, LoRALinearLayer # , LoRACrossAttnProcessor
def get_down_block(
down_block_type,
num_layers,
in_channels,
out_channels,
temb_channels,
add_downsample,
resnet_eps,
resnet_act_fn,
attn_num_head_channels,
resnet_groups=None,
cross_attention_dim=None,
downsample_padding=None,
dual_cross_attention=False,
use_linear_projection=False,
only_cross_attention=False,
upcast_attention=False,
resnet_time_scale_shift="default",
resnet_kernel_size=3,
):
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
if down_block_type == "SimpleDownEncoderBlock2D":
return SimpleDownEncoderBlock2D(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
add_downsample=add_downsample,
convnet_eps=resnet_eps,
convnet_act_fn=resnet_act_fn,
convnet_groups=resnet_groups,
downsample_padding=downsample_padding,
convnet_time_scale_shift=resnet_time_scale_shift,
convnet_kernel_size=resnet_kernel_size
)
else:
return get_down_block_default(
down_block_type,
num_layers,
in_channels,
out_channels,
temb_channels,
add_downsample,
resnet_eps,
resnet_act_fn,
attn_num_head_channels,
resnet_groups=resnet_groups,
cross_attention_dim=cross_attention_dim,
downsample_padding=downsample_padding,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
# resnet_kernel_size=resnet_kernel_size
)
class LoRACrossAttnProcessor(nn.Module):
def __init__(
self,
hidden_size,
cross_attention_dim=None,
rank=4,
post_add=False,
key_states_skipped=False,
value_states_skipped=False,
output_states_skipped=False):
super().__init__()
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.rank = rank
self.post_add = post_add
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank)
if not key_states_skipped:
self.to_k_lora = LoRALinearLayer(
hidden_size if post_add else (cross_attention_dim or hidden_size), hidden_size, rank)
if not value_states_skipped:
self.to_v_lora = LoRALinearLayer(
hidden_size if post_add else (cross_attention_dim or hidden_size), hidden_size, rank)
if not output_states_skipped:
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank)
self.key_states_skipped: bool = key_states_skipped
self.value_states_skipped: bool = value_states_skipped
self.output_states_skipped: bool = output_states_skipped
def skip_key_states(self, is_skipped: bool = True):
if is_skipped == False:
assert hasattr(self, 'to_k_lora')
self.key_states_skipped = is_skipped
def skip_value_states(self, is_skipped: bool = True):
if is_skipped == False:
assert hasattr(self, 'to_q_lora')
self.value_states_skipped = is_skipped
def skip_output_states(self, is_skipped: bool = True):
if is_skipped == False:
assert hasattr(self, 'to_out_lora')
self.output_states_skipped = is_skipped
def __call__(
self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0
):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
query = attn.to_q(hidden_states)
query = query + scale * self.to_q_lora(query if self.post_add else hidden_states)
query = attn.head_to_batch_dim(query)
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = attn.to_k(encoder_hidden_states)
if not self.key_states_skipped:
key = key + scale * self.to_k_lora(key if self.post_add else encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
if not self.value_states_skipped:
value = value + scale * self.to_v_lora(value if self.post_add else encoder_hidden_states)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
out = attn.to_out[0](hidden_states)
if not self.output_states_skipped:
out = out + scale * self.to_out_lora(out if self.post_add else hidden_states)
hidden_states = out
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class ControlLoRACrossAttnProcessor(LoRACrossAttnProcessor):
def __init__(
self,
hidden_size,
cross_attention_dim=None,
rank=4,
control_rank=None,
post_add=False,
concat_hidden=False,
control_channels=None,
control_self_add=True,
key_states_skipped=False,
value_states_skipped=False,
output_states_skipped=False,
**kwargs):
super().__init__(
hidden_size,
cross_attention_dim,
rank,
post_add=post_add,
key_states_skipped=key_states_skipped,
value_states_skipped=value_states_skipped,
output_states_skipped=output_states_skipped)
control_rank = rank if control_rank is None else control_rank
control_channels = hidden_size if control_channels is None else control_channels
self.concat_hidden = concat_hidden
self.control_self_add = control_self_add if control_channels is None else False
self.control_states: torch.Tensor = None
self.to_control = LoRALinearLayer(
control_channels + (hidden_size if concat_hidden else 0),
hidden_size,
control_rank)
self.pre_loras: List[LoRACrossAttnProcessor] = []
self.post_loras: List[LoRACrossAttnProcessor] = []
def inject_pre_lora(self, lora_layer):
self.pre_loras.append(lora_layer)
def inject_post_lora(self, lora_layer):
self.post_loras.append(lora_layer)
def inject_control_states(self, control_states):
self.control_states = control_states
def process_control_states(self, hidden_states, scale=1.0):
control_states = self.control_states.to(hidden_states.dtype)
if hidden_states.ndim == 3 and control_states.ndim == 4:
batch, _, height, width = control_states.shape
control_states = control_states.permute(0, 2, 3, 1).reshape(batch, height * width, -1)
self.control_states = control_states
_control_states = control_states
if self.concat_hidden:
b1, b2 = control_states.shape[0], hidden_states.shape[0]
if b1 != b2:
control_states = control_states[:,None].repeat(1, b2//b1, *([1]*(len(control_states.shape)-1)))
control_states = control_states.view(-1, *control_states.shape[2:])
_control_states = torch.cat([hidden_states, control_states], -1)
_control_states = scale * self.to_control(_control_states)
if self.control_self_add:
control_states = control_states + _control_states
else:
control_states = _control_states
return control_states
def __call__(
self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0
):
pre_lora: LoRACrossAttnProcessor
post_lora: LoRACrossAttnProcessor
assert self.control_states is not None
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
query = attn.to_q(hidden_states)
for pre_lora in self.pre_loras:
lora_in = query if pre_lora.post_add else hidden_states
if isinstance(pre_lora, ControlLoRACrossAttnProcessor):
lora_in = lora_in + pre_lora.process_control_states(hidden_states, scale)
query = query + scale * pre_lora.to_q_lora(lora_in)
query = query + scale * self.to_q_lora((
query if self.post_add else hidden_states) + self.process_control_states(hidden_states, scale))
for post_lora in self.post_loras:
lora_in = query if post_lora.post_add else hidden_states
if isinstance(post_lora, ControlLoRACrossAttnProcessor):
lora_in = lora_in + post_lora.process_control_states(hidden_states, scale)
query = query + scale * post_lora.to_q_lora(lora_in)
query = attn.head_to_batch_dim(query)
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = attn.to_k(encoder_hidden_states)
for pre_lora in self.pre_loras:
if not pre_lora.key_states_skipped:
key = key + scale * pre_lora.to_k_lora(key if pre_lora.post_add else encoder_hidden_states)
if not self.key_states_skipped:
key = key + scale * self.to_k_lora(key if self.post_add else encoder_hidden_states)
for post_lora in self.post_loras:
if not post_lora.key_states_skipped:
key = key + scale * post_lora.to_k_lora(key if post_lora.post_add else encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
for pre_lora in self.pre_loras:
if not pre_lora.value_states_skipped:
value = value + pre_lora.to_v_lora(value if pre_lora.post_add else encoder_hidden_states)
if not self.value_states_skipped:
value = value + scale * self.to_v_lora(value if self.post_add else encoder_hidden_states)
for post_lora in self.post_loras:
if not post_lora.value_states_skipped:
value = value + post_lora.to_v_lora(value if post_lora.post_add else encoder_hidden_states)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
out = attn.to_out[0](hidden_states)
for pre_lora in self.pre_loras:
if not pre_lora.output_states_skipped:
out = out + scale * pre_lora.to_out_lora(out if pre_lora.post_add else hidden_states)
out = out + scale * self.to_out_lora(out if self.post_add else hidden_states)
for post_lora in self.post_loras:
if not post_lora.output_states_skipped:
out = out + scale * post_lora.to_out_lora(out if post_lora.post_add else hidden_states)
hidden_states = out
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class ControlLoRACrossAttnProcessorV2(LoRACrossAttnProcessor):
def __init__(
self,
hidden_size,
cross_attention_dim=None,
rank=4,
control_rank=None,
control_channels=None,
**kwargs):
super().__init__(
hidden_size,
cross_attention_dim,
rank,
post_add=False,
key_states_skipped=True,
value_states_skipped=True,
output_states_skipped=False)
control_rank = rank if control_rank is None else control_rank
control_channels = hidden_size if control_channels is None else control_channels
self.concat_hidden = True
self.control_self_add = False
self.control_states: torch.Tensor = None
self.to_control = LoRALinearLayer(
hidden_size + control_channels,
hidden_size,
control_rank)
self.to_control_out = LoRALinearLayer(
hidden_size + control_channels,
hidden_size,
control_rank)
self.pre_loras: List[LoRACrossAttnProcessor] = []
self.post_loras: List[LoRACrossAttnProcessor] = []
def inject_pre_lora(self, lora_layer):
self.pre_loras.append(lora_layer)
def inject_post_lora(self, lora_layer):
self.post_loras.append(lora_layer)
def inject_control_states(self, control_states):
self.control_states = control_states
def process_control_states(self, hidden_states, scale=1.0, is_out=False):
control_states = self.control_states.to(hidden_states.dtype)
if hidden_states.ndim == 3 and control_states.ndim == 4:
batch, _, height, width = control_states.shape
control_states = control_states.permute(0, 2, 3, 1).reshape(batch, height * width, -1)
self.control_states = control_states
_control_states = control_states
if self.concat_hidden:
b1, b2 = control_states.shape[0], hidden_states.shape[0]
if b1 != b2:
control_states = control_states[:,None].repeat(1, b2//b1, *([1]*(len(control_states.shape)-1)))
control_states = control_states.view(-1, *control_states.shape[2:])
_control_states = torch.cat([hidden_states, control_states], -1)
_control_states = scale * (self.to_control_out if is_out else self.to_control)(_control_states)
if self.control_self_add:
control_states = control_states + _control_states
else:
control_states = _control_states
return control_states
def __call__(
self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0
):
pre_lora: LoRACrossAttnProcessor
post_lora: LoRACrossAttnProcessor
assert self.control_states is not None
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
for pre_lora in self.pre_loras:
if isinstance(pre_lora, ControlLoRACrossAttnProcessorV2):
hidden_states = hidden_states + pre_lora.process_control_states(hidden_states, scale)
hidden_states = hidden_states + self.process_control_states(hidden_states, scale)
for post_lora in self.post_loras:
if isinstance(post_lora, ControlLoRACrossAttnProcessorV2):
hidden_states = hidden_states + post_lora.process_control_states(hidden_states, scale)
query = attn.to_q(hidden_states)
for pre_lora in self.pre_loras:
lora_in = query if pre_lora.post_add else hidden_states
query = query + scale * pre_lora.to_q_lora(lora_in)
query = query + scale * self.to_q_lora(query if self.post_add else hidden_states)
for post_lora in self.post_loras:
lora_in = query if post_lora.post_add else hidden_states
query = query + scale * post_lora.to_q_lora(lora_in)
query = attn.head_to_batch_dim(query)
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = attn.to_k(encoder_hidden_states)
for pre_lora in self.pre_loras:
if not pre_lora.key_states_skipped:
key = key + scale * pre_lora.to_k_lora(key if pre_lora.post_add else encoder_hidden_states)
if not self.key_states_skipped:
key = key + scale * self.to_k_lora(key if self.post_add else encoder_hidden_states)
for post_lora in self.post_loras:
if not post_lora.key_states_skipped:
key = key + scale * post_lora.to_k_lora(key if post_lora.post_add else encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
for pre_lora in self.pre_loras:
if not pre_lora.value_states_skipped:
value = value + pre_lora.to_v_lora(value if pre_lora.post_add else encoder_hidden_states)
if not self.value_states_skipped:
value = value + scale * self.to_v_lora(value if self.post_add else encoder_hidden_states)
for post_lora in self.post_loras:
if not post_lora.value_states_skipped:
value = value + post_lora.to_v_lora(value if post_lora.post_add else encoder_hidden_states)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
for pre_lora in self.pre_loras:
if isinstance(pre_lora, ControlLoRACrossAttnProcessorV2):
hidden_states = hidden_states + pre_lora.process_control_states(hidden_states, scale, is_out=True)
hidden_states = hidden_states + self.process_control_states(hidden_states, scale, is_out=True)
for post_lora in self.post_loras:
if isinstance(post_lora, ControlLoRACrossAttnProcessorV2):
hidden_states = hidden_states + post_lora.process_control_states(hidden_states, scale, is_out=True)
out = attn.to_out[0](hidden_states)
for pre_lora in self.pre_loras:
if not pre_lora.output_states_skipped:
out = out + scale * pre_lora.to_out_lora(out if pre_lora.post_add else hidden_states)
out = out + scale * self.to_out_lora(out if self.post_add else hidden_states)
for post_lora in self.post_loras:
if not post_lora.output_states_skipped:
out = out + scale * post_lora.to_out_lora(out if post_lora.post_add else hidden_states)
hidden_states = out
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class ConvBlock2D(nn.Module):
def __init__(
self,
*,
in_channels,
out_channels=None,
conv_kernel_size=3,
dropout=0.0,
temb_channels=512,
groups=32,
groups_out=None,
pre_norm=True,
eps=1e-6,
non_linearity="swish",
time_embedding_norm="default",
kernel=None,
output_scale_factor=1.0,
up=False,
down=False,
):
super().__init__()
self.pre_norm = pre_norm
self.pre_norm = True
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.time_embedding_norm = time_embedding_norm
self.up = up
self.down = down
self.output_scale_factor = output_scale_factor
if groups_out is None:
groups_out = groups
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=conv_kernel_size, stride=1, padding=conv_kernel_size//2)
if temb_channels is not None:
if self.time_embedding_norm == "default":
time_emb_proj_out_channels = out_channels
elif self.time_embedding_norm == "scale_shift":
time_emb_proj_out_channels = out_channels * 2
else:
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
else:
self.time_emb_proj = None
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
self.dropout = torch.nn.Dropout(dropout)
if non_linearity == "swish":
self.nonlinearity = lambda x: F.silu(x)
elif non_linearity == "mish":
self.nonlinearity = Mish()
elif non_linearity == "silu":
self.nonlinearity = nn.SiLU()
self.upsample = self.downsample = None
if self.up:
if kernel == "fir":
fir_kernel = (1, 3, 3, 1)
self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel)
elif kernel == "sde_vp":
self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
else:
self.upsample = Upsample2D(in_channels, use_conv=False)
elif self.down:
if kernel == "fir":
fir_kernel = (1, 3, 3, 1)
self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel)
elif kernel == "sde_vp":
self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2)
else:
self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op")
def forward(self, input_tensor, temb):
hidden_states = input_tensor
hidden_states = self.norm1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
if self.upsample is not None:
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
if hidden_states.shape[0] >= 64:
input_tensor = input_tensor.contiguous()
hidden_states = hidden_states.contiguous()
input_tensor = self.upsample(input_tensor)
hidden_states = self.upsample(hidden_states)
elif self.downsample is not None:
input_tensor = self.downsample(input_tensor)
hidden_states = self.downsample(hidden_states)
hidden_states = self.conv1(hidden_states)
if temb is not None:
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
if temb is not None and self.time_embedding_norm == "default":
hidden_states = hidden_states + temb
hidden_states = self.norm2(hidden_states)
if temb is not None and self.time_embedding_norm == "scale_shift":
scale, shift = torch.chunk(temb, 2, dim=1)
hidden_states = hidden_states * (1 + scale) + shift
hidden_states = self.nonlinearity(hidden_states)
output_tensor = self.dropout(hidden_states)
return output_tensor
class SimpleDownEncoderBlock2D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
convnet_eps: float = 1e-6,
convnet_time_scale_shift: str = "default",
convnet_act_fn: str = "swish",
convnet_groups: int = 32,
convnet_pre_norm: bool = True,
convnet_kernel_size: int = 3,
output_scale_factor=1.0,
add_downsample=True,
downsample_padding=1,
):
super().__init__()
convnets = []
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
convnets.append(
ConvBlock2D(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=None,
eps=convnet_eps,
groups=convnet_groups,
dropout=dropout,
time_embedding_norm=convnet_time_scale_shift,
non_linearity=convnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=convnet_pre_norm,
conv_kernel_size=convnet_kernel_size,
)
)
in_channels = in_channels if num_layers == 0 else out_channels
self.convnets = nn.ModuleList(convnets)
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample2D(
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
)
]
)
else:
self.downsamplers = None
def forward(self, hidden_states):
for convnet in self.convnets:
hidden_states = convnet(hidden_states, temb=None)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
return hidden_states
@dataclass
class ControlLoRAOutput(BaseOutput):
control_states: Tuple[torch.FloatTensor]
class ControlLoRA(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
in_channels: int = 3,
down_block_types: Tuple[str] = (
"SimpleDownEncoderBlock2D",
"SimpleDownEncoderBlock2D",
"SimpleDownEncoderBlock2D",
"SimpleDownEncoderBlock2D",
),
block_out_channels: Tuple[int] = (32, 64, 128, 256),
layers_per_block: int = 1,
act_fn: str = "silu",
norm_num_groups: int = 32,
lora_pre_down_block_types: Tuple[str] = (
None,
"SimpleDownEncoderBlock2D",
"SimpleDownEncoderBlock2D",
"SimpleDownEncoderBlock2D",
),
lora_pre_down_layers_per_block: int = 1,
lora_pre_conv_skipped: bool = False,
lora_pre_conv_types: Tuple[str] = (
"SimpleDownEncoderBlock2D",
"SimpleDownEncoderBlock2D",
"SimpleDownEncoderBlock2D",
"SimpleDownEncoderBlock2D",
),
lora_pre_conv_layers_per_block: int = 1,
lora_pre_conv_layers_kernel_size: int = 1,
lora_block_in_channels: Tuple[int] = (256, 256, 256, 256),
lora_block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
lora_cross_attention_dims: Tuple[List[int]] = (
[None, 768, None, 768, None, 768, None, 768, None, 768],
[None, 768, None, 768, None, 768, None, 768, None, 768],
[None, 768, None, 768, None, 768, None, 768, None, 768],
[None, 768]
),
lora_rank: int = 4,
lora_control_rank: int = None,
lora_post_add: bool = False,
lora_concat_hidden: bool = False,
lora_control_channels: Tuple[int] = (None, None, None, None),
lora_control_self_add: bool = True,
lora_key_states_skipped: bool = False,
lora_value_states_skipped: bool = False,
lora_output_states_skipped: bool = False,
lora_control_version: int = 1
):
super().__init__()
lora_control_cls = ControlLoRACrossAttnProcessor
if lora_control_version == 2:
lora_control_cls = ControlLoRACrossAttnProcessorV2
assert lora_block_in_channels[0] == block_out_channels[-1]
if lora_pre_conv_skipped:
lora_control_channels = lora_block_in_channels
lora_control_self_add = False
self.layers_per_block = layers_per_block
self.lora_pre_down_layers_per_block = lora_pre_down_layers_per_block
self.lora_pre_conv_layers_per_block = lora_pre_conv_layers_per_block
self.conv_in = torch.nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1)
self.down_blocks = nn.ModuleList([])
self.pre_lora_layers = nn.ModuleList([])
self.lora_layers = nn.ModuleList([])
# pre_down
pre_down_blocks = []
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
pre_down_block = get_down_block(
down_block_type,
num_layers=self.layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
add_downsample=not is_final_block,
resnet_eps=1e-6,
downsample_padding=0,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attn_num_head_channels=None,
temb_channels=None,
)
pre_down_blocks.append(pre_down_block)
self.down_blocks.append(nn.Sequential(*pre_down_blocks))
self.pre_lora_layers.append(
get_down_block(
lora_pre_conv_types[0],
num_layers=self.lora_pre_conv_layers_per_block,
in_channels=lora_block_in_channels[0],
out_channels=(
lora_block_out_channels[0]
if lora_control_channels[0] is None
else lora_control_channels[0]),
add_downsample=False,
resnet_eps=1e-6,
downsample_padding=0,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attn_num_head_channels=None,
temb_channels=None,
resnet_kernel_size=lora_pre_conv_layers_kernel_size,
) if not lora_pre_conv_skipped else nn.Identity()
)
self.lora_layers.append(
nn.ModuleList([
lora_control_cls(
lora_block_out_channels[0],
cross_attention_dim=cross_attention_dim,
rank=lora_rank,
control_rank=lora_control_rank,
post_add=lora_post_add,
concat_hidden=lora_concat_hidden,
control_channels=lora_control_channels[0],
control_self_add=lora_control_self_add,
key_states_skipped=lora_key_states_skipped,
value_states_skipped=lora_value_states_skipped,
output_states_skipped=lora_output_states_skipped)
for cross_attention_dim in lora_cross_attention_dims[0]
])
)
# down
output_channel = lora_block_in_channels[0]
for i, down_block_type in enumerate(lora_pre_down_block_types):
if i == 0:
continue
input_channel = output_channel
output_channel = lora_block_in_channels[i]
down_block = get_down_block(
down_block_type,
num_layers=self.lora_pre_down_layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
add_downsample=True,
resnet_eps=1e-6,
downsample_padding=0,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attn_num_head_channels=None,
temb_channels=None,
)
self.down_blocks.append(down_block)
self.pre_lora_layers.append(
get_down_block(
lora_pre_conv_types[i],
num_layers=self.lora_pre_conv_layers_per_block,
in_channels=output_channel,
out_channels=(
lora_block_out_channels[i]
if lora_control_channels[i] is None
else lora_control_channels[i]),
add_downsample=False,
resnet_eps=1e-6,
downsample_padding=0,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attn_num_head_channels=None,
temb_channels=None,
resnet_kernel_size=lora_pre_conv_layers_kernel_size,
) if not lora_pre_conv_skipped else nn.Identity()
)
self.lora_layers.append(
nn.ModuleList([
lora_control_cls(
lora_block_out_channels[i],
cross_attention_dim=cross_attention_dim,
rank=lora_rank,
control_rank=lora_control_rank,
post_add=lora_post_add,
concat_hidden=lora_concat_hidden,
control_channels=lora_control_channels[i],
control_self_add=lora_control_self_add,
key_states_skipped=lora_key_states_skipped,
value_states_skipped=lora_value_states_skipped,
output_states_skipped=lora_output_states_skipped)
for cross_attention_dim in lora_cross_attention_dims[i]
])
)
def forward(self, x: torch.FloatTensor, return_dict: bool = True) -> Union[ControlLoRAOutput, Tuple]:
lora_layer: ControlLoRACrossAttnProcessor
orig_dtype = x.dtype
dtype = self.conv_in.weight.dtype
h = x.to(dtype)
h = self.conv_in(h)
control_states_list = []
# down
for down_block, pre_lora_layer, lora_layer_list in zip(
self.down_blocks, self.pre_lora_layers, self.lora_layers):
h = down_block(h)
control_states = pre_lora_layer(h)
if isinstance(control_states, tuple):
control_states = control_states[0]
control_states = control_states.to(orig_dtype)
for lora_layer in lora_layer_list:
lora_layer.inject_control_states(control_states)
control_states_list.append(control_states)
if not return_dict:
return tuple(control_states_list)
return ControlLoRAOutput(control_states=tuple(control_states_list))