-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblindConfusionMatrix.m
53 lines (42 loc) · 1.59 KB
/
blindConfusionMatrix.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
% Confusion matrix table for blind clustering in article
close all, clear all
r = RGCclass(0);
r.lazyLoad();
useFeatures = { 'numBranchPoints', ...
'meanSegmentLength', ...
'dendriticField', ...
'totalDendriticLength', ...
'somaArea', ...
'biStratificationDistance', ...
'meanBranchAngle', ...
'meanSegmentTortuosity', ...
'stratificationDepth' };
useFeaturesAlt = { 'branchAssymetry', ...
'dendriticDensity', ...
'dendriticDiameter', ...
'dendriticField', ...
'densityOfBranchPoints', ...
'fractalDimensionBoxCounting', ...
'meanBranchAngle', ...
'meanTerminalSegmentLength', ...
'numBranchPoints', ...
'numSegments', ...
'somaArea', ...
'totalDendriticLength' };
r.setFeatureMat(useFeatures);
% !!! WRONG this one trains a classifier data ....
assert(0)
CML = r.confusionMatrixLeaveOneOut();
makeLatexTable(r.RGCuniqueNames, r.RGCuniqueNames, CML, '%d')
for i = 1:numel(r.featuresUsed)
fprintf('%s, ', r.featureNameDisplay(r.featuresUsed{i}))
end
disp(' ')
r.setFeatureMat(useFeaturesAlt);
% !!! WRONG, see above. Need to do kmeans clustering... see blindClusteringBatch.m
CML2 = r.confusionMatrixLeaveOneOut();
makeLatexTable(r.RGCuniqueNames, r.RGCuniqueNames, CML2, '%d')
for i = 1:numel(r.featuresUsed)
fprintf('%s, ', r.featureNameDisplay(r.featuresUsed{i}))
end
disp(' ')