This repository has been archived by the owner on Sep 19, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmain.py
115 lines (101 loc) · 2.98 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import torch
from torch.utils.data import DataLoader
from stable_baselines3.common.vec_env import DummyVecEnv
from trajectory.models.gpt import GPT, GPTTrainer
from trajectory.utils.env import create_env, vec_rollout
from trajectory.datasets.d4rl_dataset import DiscretizedDataset
DEVICE = "cpu"
DATASETS = [
# halfcheetah
"halfcheetah-medium-expert-v2",
"halfcheetah-medium-v2",
"halfcheetah-medium-replay-v2",
# hopper
"hopper-medium-expert-v2",
"hopper-medium-v2",
"hopper-medium-replay-v2",
# walker
"walker2d-medium-expert-v2",
"walker2d-medium-v2",
"walker2d-medium-replay-v2",
]
def main():
# This is example of training and evaluation if you want to train on your own without configs and scripts/train.py
torch.manual_seed(42)
dataset = DiscretizedDataset(
env_name=DATASETS[1],
seq_len=10,
cache_path="data",
num_bins=100,
discount=0.99,
strategy="uniform"
)
dataloader = DataLoader(dataset, batch_size=256, shuffle=True, num_workers=8, pin_memory=True)
model = GPT(
vocab_size=100,
transition_dim=25,
observation_dim=17,
action_dim=6,
seq_len=25 * 10,
embedding_dim=128,
num_layers=4,
num_heads=4,
use_sep_heads=True
)
model.to(DEVICE)
print("Number of model parameters:", sum(p.numel() for p in model.parameters()))
num_epochs = int(1e6 / len(dataset) * 50)
print(f"Training for {num_epochs} epochs")
warmup_tokens = len(dataset) * 10 * 25
final_tokens = warmup_tokens * num_epochs
trainer = GPTTrainer(
final_tokens=final_tokens,
warmup_tokens=warmup_tokens,
action_weight=5,
learning_rate=6e-4,
betas=(0.9, 0.95),
weight_decay=0.1,
clip_grad=1.0,
eval_seed=42,
eval_every=50,
eval_episodes=5,
eval_plan_every=1,
eval_beam_width=32,
eval_beam_steps=5,
eval_beam_context=5,
eval_sample_expand=2,
eval_k_obs=1, # as in original implementation
eval_k_reward=1,
eval_k_act=None,
checkpoints_path=f"checkpoints/gpt/{DATASETS[1]}",
save_every=1,
device=DEVICE
)
trainer.train(
model=model,
dataloader=dataloader,
num_epochs=num_epochs
)
# evaluation after training is done
discretizer = dataset.get_discretizer()
discretizer.to(DEVICE)
vec_env = DummyVecEnv([lambda: create_env(DATASETS[1]) for _ in range(25)])
rewards = vec_rollout(
env=vec_env,
model=model,
discretizer=discretizer,
beam_width=32,
beam_context_size=5,
beam_steps=5,
plan_every=1,
sample_expand=2,
k_reward=1,
k_obs=1,
k_act=None,
device=DEVICE
)
scores = [vec_env.envs[0].get_normalized_score(r) for r in rewards]
print("Rewards:", rewards)
print("Scores:", scores)
if __name__ == "__main__":
main()