forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dual_edge_norms.h
136 lines (114 loc) · 5.45 KB
/
dual_edge_norms.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_GLOP_DUAL_EDGE_NORMS_H_
#define OR_TOOLS_GLOP_DUAL_EDGE_NORMS_H_
#include "ortools/glop/basis_representation.h"
#include "ortools/glop/parameters.pb.h"
#include "ortools/lp_data/lp_data.h"
#include "ortools/lp_data/lp_types.h"
#include "ortools/lp_data/permutation.h"
#include "ortools/lp_data/scattered_vector.h"
#include "ortools/util/stats.h"
namespace operations_research {
namespace glop {
// This class maintains the dual edge squared norms to be used in the
// dual steepest edge pricing. The dual edge u_i associated with a basic
// variable of row index i is such that u_i.B = e_i where e_i is the unit row
// vector with a 1.0 at position i and B the current basis. We call such vector
// u_i an unit row left inverse, and it can be computed by
//
// basis_factorization.LeftSolveForUnitRow(i, &u_i);
//
// Instead of computing each ||u_i|| at every iteration, it is more efficient to
// update them incrementally for each basis pivot applied to B. See the code or
// the papers below for details:
//
// J.J. Forrest, D. Goldfarb, "Steepest-edge simplex algorithms for linear
// programming", Mathematical Programming 57 (1992) 341-374, North-Holland.
// http://www.springerlink.com/content/q645w3t2q229m248/
//
// Achim Koberstein, "The dual simplex method, techniques for a fast and stable
// implementation", PhD, Paderborn, Univ., 2005.
// http://digital.ub.uni-paderborn.de/hs/download/pdf/3885?originalFilename=true
class DualEdgeNorms {
public:
// Takes references to the linear program data we need.
explicit DualEdgeNorms(const BasisFactorization& basis_factorization);
// Clears, i.e. reset the object to its initial value. This will trigger a
// full norm recomputation on the next GetEdgeSquaredNorms().
void Clear();
// When we just add new constraints to the matrix and use an incremental
// solve, we do not need to recompute the norm of the old rows, and the norm
// of the new ones can be just set to 1 as long as we use identity columns for
// these.
void ResizeOnNewRows(RowIndex new_size);
// If this is true, then the caller must re-factorize the basis before the
// next call to GetEdgeSquaredNorms(). This is because the latter will
// recompute the norms from scratch and therefore needs a hightened precision
// and speed. This also indicates if GetEdgeSquaredNorms() will trigger a
// recomputation.
bool NeedsBasisRefactorization() const;
// Returns the dual edge squared norms. This is only valid if the caller
// properly called UpdateBeforeBasisPivot() before each basis pivot, or just
// called Clear().
const DenseColumn& GetEdgeSquaredNorms();
// Updates the norms if the columns of the basis where permuted.
void UpdateDataOnBasisPermutation(const ColumnPermutation& col_perm);
// Updates the norms just before a basis pivot is applied:
// - The column at leaving_row will leave the basis and the column at
// entering_col will enter it.
// - direction is the right inverse of the entering column.
// - unit_row_left_inverse is the left inverse of the unit row with index
// given by the leaving_row. This is also the leaving dual edge.
void UpdateBeforeBasisPivot(ColIndex entering_col, RowIndex leaving_row,
const ScatteredColumn& direction,
const ScatteredRow& unit_row_left_inverse);
// Sets the algorithm parameters.
void SetParameters(const GlopParameters& parameters) {
parameters_ = parameters;
}
// Stats related functions.
std::string StatString() const { return stats_.StatString(); }
private:
// Recomputes the dual edge squared norms from scratch with maximum precision.
// The matrix must have been refactorized before because we will do a lot of
// inversions. See NeedsBasisRefactorization(). This is checked in debug mode.
void ComputeEdgeSquaredNorms();
// Computes the vector tau needed to update the norms using a right solve:
// B.tau = (u_i)^T, u_i.B = e_i for i = leaving_row.
const DenseColumn& ComputeTau(const ScatteredColumn& unit_row_left_inverse);
// Statistics.
struct Stats : public StatsGroup {
Stats()
: StatsGroup("DualEdgeNorms"),
tau_density("tau_density", this),
edge_norms_accuracy("edge_norms_accuracy", this),
lower_bounded_norms("lower_bounded_norms", this) {}
RatioDistribution tau_density;
DoubleDistribution edge_norms_accuracy;
IntegerDistribution lower_bounded_norms;
};
Stats stats_;
// Parameters.
GlopParameters parameters_;
// Problem data that should be updated from outside.
const BasisFactorization& basis_factorization_;
// The dual edge norms.
DenseColumn edge_squared_norms_;
// Whether we should recompute the norm from scratch.
bool recompute_edge_squared_norms_;
DISALLOW_COPY_AND_ASSIGN(DualEdgeNorms);
};
} // namespace glop
} // namespace operations_research
#endif // OR_TOOLS_GLOP_DUAL_EDGE_NORMS_H_