-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnormal_to_height.py
50 lines (31 loc) · 1.43 KB
/
normal_to_height.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import numpy as np
def normal_to_grad(normal_map):
return (normal_map[0]-0.5)*2, (normal_map[1]-0.5)*2
def copy_flip(grad_x, grad_y):
'''Concat 4 flipped copies of input gradients (makes them wrap).
Output is twice bigger in both dimensions.'''
grad_x_top = np.hstack([grad_x, -np.flip(grad_x, axis=1)])
grad_x_bottom = np.hstack([np.flip(grad_x, axis=0), -np.flip(grad_x)])
new_grad_x = np.vstack([grad_x_top, grad_x_bottom])
grad_y_top = np.hstack([grad_y, np.flip(grad_y, axis=1)])
grad_y_bottom = np.hstack([-np.flip(grad_y, axis=0), -np.flip(grad_y)])
new_grad_y = np.vstack([grad_y_top, grad_y_bottom])
return new_grad_x, new_grad_y
def frankot_chellappa(grad_x, grad_y, normalize=True):
'''Frankot-Chellappa depth-from-gradient algorithm.'''
rows, cols = grad_x.shape
rows_scale = (np.arange(rows)-(rows//2+1)) / (rows-rows % 2)
cols_scale = (np.arange(cols)-(cols//2+1)) / (cols-cols % 2)
u_grid, v_grid = np.meshgrid(cols_scale, rows_scale)
u_grid = np.fft.ifftshift(u_grid)
v_grid = np.fft.ifftshift(v_grid)
grad_x_F = np.fft.fft2(grad_x)
grad_y_F = np.fft.fft2(grad_y)
nominator = (-1j*u_grid*grad_x_F) + (-1j*v_grid*grad_y_F)
denominator = (u_grid**2) + (v_grid**2) + 1e-16
Z_F = nominator / denominator
Z_F[0, 0] = 0.0
Z = np.real(np.fft.ifft2(Z_F))
if normalize:
return (Z-np.min(Z)) / (np.max(Z)-np.min(Z))
return Z