-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathDSADS_processing.py
121 lines (86 loc) · 3.16 KB
/
DSADS_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# !/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Thur Jun 10 2021
@author: Rebecca Adaimi
DSADS dataset loading and preprocessing
Participants 7 and 8 are taken as test data
"""
import numpy as np
import pandas as pd
import os
import math as m
import matplotlib.pyplot as plt
from scipy import stats
import scipy.fftpack
import copy
import scipy as sp
import scipy.signal
from collections import Counter
import _pickle as cp
import sys
SAMPLING_FREQ = 25 # Hz
def normalize(x):
"""Normalizes all sensor channels by mean substraction,
dividing by the standard deviation and by 2.
:param x: numpy integer matrix
Sensor data
:return:
Normalized sensor data
"""
x = np.array(x, dtype=np.float32)
m = np.mean(x, axis=0)
x -= m
std = np.std(x, axis=0)
std += 0.000001
x /= (std * 2) # 2 is for having smaller values
return x
if __name__ == "__main__":
path = './DSADS_data'
activities = sorted(os.listdir(path))
print(activities)
train_data = []
test_data = []
train_labels = []
test_labels = []
for a in activities:
activity_path = os.sep.join((path,a))
participants = sorted(os.listdir(activity_path))
print(participants)
test_participants = participants[-2:]
train_participants = participants[:-2]
for p in train_participants:
train_data_sub = []
full_path = os.sep.join((activity_path, p))
segments = sorted(os.listdir(full_path))
for seg in segments:
segment_path = os.sep.join((full_path, seg))
print(segment_path)
data = pd.DataFrame(np.genfromtxt(segment_path, delimiter=','))
data = data[~np.isnan(data).any(axis=1)]
train_data_sub.extend(np.reshape(np.array(data),(1,np.shape(data)[0], np.shape(data)[1])))
train_labels.extend([int(a[-2:])])
#train_data_sub = normalize(train_data_sub)
train_data.extend(train_data_sub)
for p in test_participants:
test_data_sub = []
full_path = os.sep.join((activity_path, p))
segments = sorted(os.listdir(full_path))
for seg in segments:
segment_path = os.sep.join((full_path, seg))
print(segment_path)
data = pd.DataFrame(np.genfromtxt(segment_path, delimiter=','))
data = data[~np.isnan(data).any(axis=1)]
test_data_sub.extend(np.reshape(np.array(data),(1,np.shape(data)[0], np.shape(data)[1])))
test_labels.extend([int(a[-2:])])
#test_data_sub = normalize(test_data_sub)
test_data.extend(test_data_sub)
assert len(test_data) == len(test_labels)
assert len(train_data) == len(train_labels)
print("Train Data: {}".format(np.shape(train_data)))
print("Test Data: {}".format(np.shape(test_data)))
obj = [(np.array(train_data), np.array(train_labels)), (np.array(test_data), np.array(test_labels))]
target_filename = './DSADS_Train_Test_normalized.data'
f = open(target_filename, 'wb')
cp.dump(obj, f)
f.close()