-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
50 lines (39 loc) · 1.95 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import glob
import os
import pandas as pd
import numpy as np
nii_dir = r"D:\MS\TRC-LAB\ICH Datasets\PhysioNet_ICH"
nii_label = os.path.join(nii_dir, "hemorrhage_diagnosis_raw_ct.csv")
nii_images = glob.glob(os.path.join(nii_dir, "ct_scans", "*.nii"))
ICHType = {"NOT_ANY": 0, "INTRAPARENCHYMAL": 1, "INTRAVENTRICULAR": 2, "SUBARACHNOID": 4, "SUBDURAL": 8, "EPIDURAL": 16}
diagnosis_label = ICHType["NOT_ANY"]
train_labels = pd.read_csv(nii_label)
diagnosis_columns = ["PatientNumber", "Intraparenchymal", "Intraventricular", "Subarachnoid", "Subdural", "Epidural"]
diagnosis_labels = train_labels.loc[:, diagnosis_columns]
# print(diagnosis_labels)
# print(train_labels["PatientNumber"])
# print(diagnosis_labels["PatientNumber"])
for idx in diagnosis_labels["PatientNumber"]:
patient_labels = diagnosis_labels.loc[diagnosis_labels["PatientNumber"] == idx]
patient_labels.index = pd.RangeIndex(start=1, stop=len(patient_labels) + 1, step=1)
for labels in patient_labels.iterrows():
for i, label in enumerate(labels[1][1:], start=1):
if label == 1:
# print(labels)
diagnosis_label |= ICHType[diagnosis_columns[i].upper()]
print(labels, diagnosis_label)
diagnosis_label = ICHType["NOT_ANY"]
# print(labels[1][1:])
# for labels in patient_labels.loc[diagnosis_labels["PatientNumber"] == idx, diagnosis_columns[1:]].values:
# # print(labels)
# if labels.sum() > 0:
# for i in range(1, len(labels)):
# if labels[i] == 1:
# diagnosis_label |= ICHType[diagnosis_labels.columns[i].upper()]
# print(diagnosis_label)
# diagnosis_label = ICHType["NOT_ANY"]
# for i, row in patient_labels.iterrows():
# if row[1:].sum() > 0:
# diagnosis_label |= diagnosis_columns[i].upper()
# print(idx, patient_labels.loc[diagnosis_labels["PatientNumber"] == idx, diagnosis_columns[1:]].values)
break