This page is an effort to give short examples for common tasks and will be extended over time.
Users can inspect the prediction results using the visualizer. Run python examples/vis_pred.py
to see an example.
First, initialize a Visualizer
and set up LabelLUT
as label names to visualize. Here we would like to visualize points from SemanticKITTI
. The labels can be obtained by get_label_to_names()
import os
from os import path
from os.path import exists
from ml3d.vis import Visualizer, LabelLUT
from ml3d.datasets import SemanticKITTI
kitti_labels = SemanticKITTI.get_label_to_names()
v = Visualizer()
lut = LabelLUT()
for val in sorted(kitti_labels.keys()):
lut.add_label(kitti_labels[val], val)
v.set_lut("labels", lut)
v.set_lut("pred", lut)
Second, we will construct the networks and pipelines, load the pretrained weights, and prepare the data to be visualized.
from ml3d.torch.pipelines import SemanticSegmentation
from ml3d.torch.models import RandLANet, KPFCNN
kpconv_url = "https://storage.googleapis.com/open3d-releases/model-zoo/kpconv_semantickitti_202009090354utc.pth"
randlanet_url = "https://storage.googleapis.com/open3d-releases/model-zoo/randlanet_semantickitti_202009090354utc.pth"
ckpt_path = "./logs/vis_weights_{}.pth".format('RandLANet')
if not exists(ckpt_path):
cmd = "wget {} -O {}".format(randlanet_url, ckpt_path)
os.system(cmd)
model = RandLANet(ckpt_path=ckpt_path)
pipeline_r = SemanticSegmentation(model)
pipeline_r.load_ckpt(model.cfg.ckpt_path)
ckpt_path = "./logs/vis_weights_{}.pth".format('KPFCNN')
if not exists(ckpt_path):
cmd = "wget {} -O {}".format(kpconv_url, ckpt_path)
print(cmd)
os.system(cmd)
model = KPFCNN(ckpt_path=ckpt_path, in_radius=10)
pipeline_k = SemanticSegmentation(model)
pipeline_k.load_ckpt(model.cfg.ckpt_path)
data_path = os.path.dirname(os.path.realpath(__file__)) + "/demo_data"
pc_names = ["000700", "000750"]
# see this function in examples/vis_pred.py,
# or it can be your customized dataloader,
# or you can use the exsisting get_data() methods in ml3d/datasets
pcs = get_custom_data(pc_names, data_path)
Third, we can run the inference and collect the results and send the results to Visualizer.visualize(list_of_pointclouds_to_visualize)
. Note that the input to visualize()
is a list of point clouds and their predictions. Each point cloud is a dictionary like,
vis_d = {
"name": name,
"points": pts, # n x 3
"labels": label, # n
"pred": pred_label, # n
}
You will give its name
and points
. Other entries can be customized. For example, we can visualize its ground truth label
and our prediction pred
on a point cloud.
Here is the result by running python examples/vis_pred.py
,
The visualizer can be used to visualize point clouds with custom attributes. This can be useful to for example for comparing predictions and the ground truth.
Point clouds are defined as a dictionaries with mandatory entries name and points defining the name of the object and the point positions. In the following example we create a single point cloud with an attribute random_colors and an integer attribute int_attr in the range [0,4]. The data can be passed as PyTorch tensor, TensorFlow tensors or as numpy arrays.
import open3d.ml.torch as ml3d
# or import open3d.ml.tf as ml3d
import numpy as np
num_points = 100000
points = np.random.rand(num_points, 3).astype(np.float32)
data = [
{
'name': 'my_point_cloud',
'points': points,
'random_colors': np.random.rand(*points.shape).astype(np.float32),
'int_attr': (points[:,0]*5).astype(np.int32),
}
]
vis = ml3d.vis.Visualizer()
vis.visualize(data)
To visualize the random_colors attribute select it as Data and choose the RGB shader to directly interpret the values as colors. Max value is 1.0 in our example.
To visualize the int_attr attribute select it as Data and choose the one of the colormap shaders, which will assign a color to each value. Here we choose the rainbow colormap. Note that the colormap is automatically adjusted to the range of the data. It is also possible to edit the colormap in the visualizer to adjust it to specific use cases.
To use a custom LUT for visualizing attributes we first define the table with
lut = ml3d.vis.LabelLUT()
lut.add_label('zero', 0)
lut.add_label('one', 1)
lut.add_label('two', 2)
lut.add_label('three', 3, [0,0,1]) # use blue for label 'three'
lut.add_label('four', 4, [0,1,0]) # use green for label 'four'
If no color is provided when adding a label a color will be assigned from a default LUT.
To pass the LUT to the visualizer we associate it with the int_attr.
vis.set_lut("int_attr", lut)
vis.visualize(data)
Selecting the int_attr in the visualizer will then switch to our LUT.
For adding a new model to Open3D-ML you need to clone the repository and add
the model code to ml3d/{tf,torch}/models
.
All models should be derived from BaseModel
defined in
ml3d/{tf,torch}/models/base_model.py
and must implement a set of functions
that allow a pipeline to interact with the model. A minimal model for torch
looks like this.
# use relative import for all imports within ml3d.
from .base_model import BaseModel
class MyModel(BaseModel):
def __init__(self, name="MyModel"):
super().__init__(name=name)
# network definition ...
def forward(self, inputs):
# inference code ...
def get_optimizer(self, cfg_pipeline):
optimizer = torch.optim.Adam(self.parameters(), lr=cfg_pipeline.adam_lr)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, cfg_pipeline.scheduler_gamma)
return optimizer, scheduler
def get_loss(self, Loss, results, inputs):
labels = inputs['data'].labels # processed data from model.preprocess and/or model.transform.
# Loss is an object of type SemSegLoss. Any new loss can be added to `ml3d/{tf, torch}/modules/semseg_loss.py`
loss = Loss.weighted_CrossEntropyLoss(results, labels)
results, labels = Loss.filter_valid_label(results, labels) # remove ignored indices if present.
return loss, labels, results
def preprocess(self, data, attr):
return data
For adding a new dataset, you can add the dataset code to ml3d/datasets
.
A Dataset class is independent of an ML framework and has to be derived from
BaseDataset
defined in ml3d/datasets/base_dataset.py
. You must implement
another class MyDatasetSplit
which is used to return data and attributes
for files corresponding to a particular split.
from .base_dataset import BaseDataset
class MyDataset(BaseDataset):
def __init__(self, name="MyDataset"):
super().__init__(name=name)
# read file lists.
def get_split(self, split):
return MyDatasetSplit(self, split=split)
def is_tested(self, attr):
# checks whether attr['name'] is already tested.
def save_test_result(self, results, attr):
# save results['predict_labels'] to file.
class MyDatasetSplit():
def __init__(self, dataset, split='train'):
self.split = split
self.path_list = []
# collect list of files relevant to split.
def __len__(self):
return len(self.path_list)
def get_data(self, idx):
path = self.path_list[idx]
points, features, labels = read_pc(path)
return {'point': points, 'feat': features, 'label': labels}
def get_attr(self, idx):
path = self.path_list[idx]
name = path.split('/')[-1]
return {'name': name, 'path': path, 'split': self.split}
To test code with an already installed Open3D package you can set the
environment variable OPEN3D_ML_ROOT
to the root dir of the repo. This can be
done with
source /path/to/Open3D-ML/set_open3d_ml_root.sh
which will make the ml namespace point to ml3d
in the repo.
Our example model can then be instantiated with
import open3d.ml.torch as ml3d
# prints "Using external Open3D-ML in /path/to/Open3D-ML"
model = ml3d.models.MyModel()
dataset = ml3d.datasets.MyDataset()