For pre-training new upstream models, you'll need high-end GPU(s).
- Download the LibriSpeech raw data from here.
- (IMPORTANT) Generate the meta data directory
len_for_bucket/
for bucketing to accelerate training:
python3 preprocess/generate_len_for_bucket.py -i PATH_TO_YOUR/LibriSpeech/
-
Open
S3PRL/pretrain/tera/config_runner.yaml
:- This is the default runner config of tera, and it will be taken by default if not specified otherwise.
- To assign another config other then default, you can use the
-c
argument, for example:-u tera -c another_new_config_runner.yaml
-
Change the paths in
config_runner.yaml
:- Change the following to your own path:
libri_root: '/media/andi611/1TBSSD/LibriSpeech/' file_path: 'data/len_for_bucket'
-
Other training settings to care about:
- Check these attributes in
config_runner.yaml
:
n_epochs: 100 total_steps: -1 gradient_accumulate_steps: 8 train_batch_size: 32 sets: ['train-clean-100', 'train-clean-360', 'train-other-500']
- If
n_epochs
is given,total_steps
will be ignored. - Set
n_epochs
to-1
if you want to usetotal_steps
instead - The acutal batch size =
gradient_accumulate_steps
*train_batch_size
- Modify the
sets
list to choose pretraining subsets.
- Check these attributes in
- Command:
python run_pretrain.py -u mockingjay -g pretrain/mockingjay/config_model.yaml -n YourModelName
- This takes the default runner conifg:
pretrain/mockingjay/config_runner.yaml
- Use
-c
to specify runner config other than default. - On multiple GPUs, add
--multi_gpu
- Check the log on console that everything is correct and as expected:
- Command:
python run_pretrain.py -u tera -g pretrain/tera/config_model.yaml -n YourModelName
- Everything else is identical to the above.
- Command:
python run_pretrain.py -u audio_albert -g pretrain/audio_albert/config_model.yaml -n YourModelName
- Everything else is identical to the above.
- Use the local method of
mockingjay_local
and-k
to specify the path to your checkpoint. - Example command:
python run_downstream.py -m train -u mockingjay_local -k example_checkpoint/states-1000000.ckpt -d phone_linear -n ExpName
- Use the local method of
tera_local
and-k
to specify the path to your checkpoint. - Example command:
python run_downstream.py -m train -u tera_local -k example_checkpoint/states-1000000.ckpt -d phone_linear -n ExpName
- Use the local method of
audio_albert_local
and-k
to specify the path to your checkpoint. - Example command:
python run_downstream.py -m train -u audio_albert_local -k example_checkpoint/states-1000000.ckpt -d phone_linear -n ExpName