This repository has been archived by the owner on Jul 18, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 18
/
defense.py
323 lines (293 loc) · 13.3 KB
/
defense.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import PIL
import PIL.Image
from io import BytesIO
import numpy as np
import tensorflow as tf
from numba import njit
def defend_reduce(arr, depth=3):
arr = (arr * 255.0).astype(np.uint8)
shift = 8 - depth
arr = (arr >> shift) << shift
arr = arr.astype(np.float32)/255.0
return arr
def defend_jpeg(input_array):
pil_image = PIL.Image.fromarray((input_array*255.0).astype(np.uint8))
f = BytesIO()
pil_image.save(f, format='jpeg', quality=75) # quality level specified in paper
jpeg_image = np.asarray(PIL.Image.open(f)).astype(np.float32)/255.0
return jpeg_image
def defend_png(input_array):
pil_image = PIL.Image.fromarray((np.around(input_array*255.0)).astype(np.uint8))
f = BytesIO()
pil_image.save(f, format='png')
png_image = np.asarray(PIL.Image.open(f)).astype(np.float32)/255.0
return png_image
# for testing implementation
def defend_none(input_array):
# this convertion should be lossless
pil_image = PIL.Image.fromarray(input_array)
ret_image = np.asarray(pil_image)
return ret_image
# based on https://github.com/scikit-image/scikit-image/blob/master/skimage/restoration/_denoise_cy.pyx
# super slow since this is implemented in pure python :'(
@njit
def bregman(image, mask, weight, eps=1e-3, max_iter=100):
rows, cols, dims = image.shape
rows2 = rows + 2
cols2 = cols + 2
total = rows * cols * dims
shape_ext = (rows2, cols2, dims)
u = np.zeros(shape_ext)
dx = np.zeros(shape_ext)
dy = np.zeros(shape_ext)
bx = np.zeros(shape_ext)
by = np.zeros(shape_ext)
u[1:-1, 1:-1] = image
# reflect image
u[0, 1:-1] = image[1, :]
u[1:-1, 0] = image[:, 1]
u[-1, 1:-1] = image[-2, :]
u[1:-1, -1] = image[:, -2]
i = 0
rmse = np.inf
lam = 2 * weight
norm = (weight + 4 * lam)
while i < max_iter and rmse > eps:
rmse = 0
for k in range(dims):
for r in range(1, rows+1):
for c in range(1, cols+1):
uprev = u[r, c, k]
# forward derivatives
ux = u[r, c+1, k] - uprev
uy = u[r+1, c, k] - uprev
# Gauss-Seidel method
if mask[r-1, c-1]:
unew = (lam * (u[r+1, c, k] +
u[r-1, c, k] +
u[r, c+1, k] +
u[r, c-1, k] +
dx[r, c-1, k] -
dx[r, c, k] +
dy[r-1, c, k] -
dy[r, c, k] -
bx[r, c-1, k] +
bx[r, c, k] -
by[r-1, c, k] +
by[r, c, k]
) + weight * image[r-1, c-1, k]
) / norm
else:
# similar to the update step above, except we take
# lim_{weight->0} of the update step, effectively
# ignoring the l2 loss
unew = (u[r+1, c, k] +
u[r-1, c, k] +
u[r, c+1, k] +
u[r, c-1, k] +
dx[r, c-1, k] -
dx[r, c, k] +
dy[r-1, c, k] -
dy[r, c, k] -
bx[r, c-1, k] +
bx[r, c, k] -
by[r-1, c, k] +
by[r, c, k]
) / 4.0
u[r, c, k] = unew
# update rms error
rmse += (unew - uprev)**2
bxx = bx[r, c, k]
byy = by[r, c, k]
# d_subproblem
s = ux + bxx
if s > 1/lam:
dxx = s - 1/lam
elif s < -1/lam:
dxx = s + 1/lam
else:
dxx = 0
s = uy + byy
if s > 1/lam:
dyy = s - 1/lam
elif s < -1/lam:
dyy = s + 1/lam
else:
dyy = 0
dx[r, c, k] = dxx
dy[r, c, k] = dyy
bx[r, c, k] += ux - dxx
by[r, c, k] += uy - dyy
rmse = np.sqrt(rmse / total)
i += 1
# return np.squeeze(np.asarray(u[1:-1, 1:-1]))
return u[1:-1, 1:-1]
@njit
def defend_tv(input_array, keep_prob=0.5, lambda_tv=0.03):
mask = np.random.uniform(0.0, 1.0, size=input_array.shape[:2])
mask = mask < keep_prob
return bregman(input_array, mask, weight=2.0/lambda_tv)
def make_defend_quilt(sess):
# setup for quilting
quilt_db = np.load('data/quilt_db.npy')
quilt_db_reshaped = quilt_db.reshape(1000000, -1)
TILE_SIZE = 5
TILE_OVERLAP = 2
tile_skip = TILE_SIZE - TILE_OVERLAP
K = 10
db_tensor = tf.placeholder(tf.float32, quilt_db_reshaped.shape)
query_imgs = tf.placeholder(tf.float32, (TILE_SIZE * TILE_SIZE * 3, None))
norms = tf.reduce_sum(tf.square(db_tensor), axis=1)[:, tf.newaxis] \
- 2*tf.matmul(db_tensor, query_imgs)
_, topk_indices = tf.nn.top_k(-tf.transpose(norms), k=K, sorted=False)
def min_error_table(arr, direction):
assert direction in ('horizontal', 'vertical')
y, x = arr.shape
cum = np.zeros_like(arr)
if direction == 'horizontal':
cum[:, -1] = arr[:, -1]
for ix in range(x-2, -1, -1):
for iy in range(y):
m = arr[iy, ix+1]
if iy > 0:
m = min(m, arr[iy-1, ix+1])
if iy < y - 1:
m = min(m, arr[iy+1, ix+1])
cum[iy, ix] = arr[iy, ix] + m
elif direction == 'vertical':
cum[-1, :] = arr[-1, :]
for iy in range(y-2, -1, -1):
for ix in range(x):
m = arr[iy+1, ix]
if ix > 0:
m = min(m, arr[iy+1, ix-1])
if ix < x - 1:
m = min(m, arr[iy+1, ix+1])
cum[iy, ix] = arr[iy, ix] + m
return cum
def index_exists(arr, index):
if arr.ndim != len(index):
return False
return all(i > 0 for i in index) and all(index[i] < arr.shape[i] for i in range(arr.ndim))
def assign_block(ix, iy, tile, synth):
posx = tile_skip * ix
posy = tile_skip * iy
if ix == 0 and iy == 0:
synth[posy:posy+TILE_SIZE, posx:posx+TILE_SIZE, :] = tile
elif iy == 0:
# first row, only have horizontal overlap of the block
tile_left = tile[:, :TILE_OVERLAP, :]
synth_right = synth[:TILE_SIZE, posx:posx+TILE_OVERLAP, :]
errors = np.sum(np.square(tile_left - synth_right), axis=2)
table = min_error_table(errors, direction='vertical')
# copy row by row into synth
xoff = np.argmin(table[0, :])
synth[posy, posx+xoff:posx+TILE_SIZE] = tile[0, xoff:]
for yoff in range(1, TILE_SIZE):
# explore nearby xoffs
candidates = [(yoff, xoff), (yoff, xoff-1), (yoff, xoff+1)]
index = min((i for i in candidates if index_exists(table, i)), key=lambda i: table[i])
xoff = index[1]
synth[posy+yoff, posx+xoff:posx+TILE_SIZE] = tile[yoff, xoff:]
elif ix == 0:
# first column, only have vertical overlap of the block
tile_up = tile[:TILE_OVERLAP, :, :]
synth_bottom = synth[posy:posy+TILE_OVERLAP, :TILE_SIZE, :]
errors = np.sum(np.square(tile_up - synth_bottom), axis=2)
table = min_error_table(errors, direction='horizontal')
# copy column by column into synth
yoff = np.argmin(table[:, 0])
synth[posy+yoff:posy+TILE_SIZE, posx] = tile[yoff:, 0]
for xoff in range(1, TILE_SIZE):
# explore nearby yoffs
candidates = [(yoff, xoff), (yoff-1, xoff), (yoff+1, xoff)]
index = min((i for i in candidates if index_exists(table, i)), key=lambda i: table[i])
yoff = index[0]
synth[posy+yoff:posy+TILE_SIZE, posx+xoff] = tile[yoff:, xoff]
else:
# glue cuts along diagonal
tile_up = tile[:TILE_OVERLAP, :, :]
synth_bottom = synth[posy:posy+TILE_OVERLAP, :TILE_SIZE, :]
errors_up = np.sum(np.square(tile_up - synth_bottom), axis=2)
table_up = min_error_table(errors_up, direction='horizontal')
tile_left = tile[:, :TILE_OVERLAP, :]
synth_right = synth[:TILE_SIZE, posx:posx+TILE_OVERLAP, :]
errors_left = np.sum(np.square(tile_left - synth_right), axis=2)
table_left = min_error_table(errors_left, direction='vertical')
glue_index = -1
glue_value = np.inf
for i in range(TILE_OVERLAP):
e = table_up[i, i] + table_left[i, i]
if e < glue_value:
glue_value = e
glue_index = i
# copy left part first, up to the overlap column
xoff = glue_index
synth[posy+glue_index, posx+xoff:posx+TILE_OVERLAP] = tile[glue_index, xoff:TILE_OVERLAP]
for yoff in range(glue_index+1, TILE_SIZE):
# explore nearby xoffs
candidates = [(yoff, xoff), (yoff, xoff-1), (yoff, xoff+1)]
index = min((i for i in candidates if index_exists(table_left, i)), key=lambda i: table_left[i])
xoff = index[1]
synth[posy+yoff, posx+xoff:posx+TILE_OVERLAP] = tile[yoff, xoff:TILE_OVERLAP]
# copy right part, down to overlap row
yoff = glue_index
synth[posy+yoff:posy+TILE_OVERLAP, posx+glue_index] = tile[yoff:TILE_OVERLAP, glue_index]
for xoff in range(glue_index+1, TILE_SIZE):
# explore nearby yoffs
candidates = [(yoff, xoff), (yoff-1, xoff), (yoff+1, xoff)]
index = min((i for i in candidates if index_exists(table_up, i)), key=lambda i: table_up[i])
yoff = index[0]
synth[posy+yoff:posy+TILE_OVERLAP, posx+xoff] = tile[yoff:TILE_OVERLAP, xoff]
# copy rest of image
synth[posy+TILE_OVERLAP:posy+TILE_SIZE, posx+TILE_OVERLAP:posx+TILE_SIZE] = tile[TILE_OVERLAP:, TILE_OVERLAP:]
KNN_MAX_BATCH = 1000
def quilt(arr, graphcut=True):
h, w, c = arr.shape
assert (h - TILE_SIZE) % tile_skip == 0
assert (w - TILE_SIZE) % tile_skip == 0
horiz_blocks = (w - TILE_SIZE) // tile_skip + 1
vert_blocks = (h - TILE_SIZE) // tile_skip + 1
num_patches = horiz_blocks * vert_blocks
patches = np.zeros((TILE_SIZE * TILE_SIZE * 3, num_patches))
idx = 0
for iy in range(vert_blocks):
for ix in range(horiz_blocks):
posx = tile_skip*ix
posy = tile_skip*iy
patches[:, idx] = arr[posy:posy+TILE_SIZE, posx:posx+TILE_SIZE, :].ravel()
idx += 1
ind = []
for chunk in range(num_patches // KNN_MAX_BATCH + (1 if num_patches % KNN_MAX_BATCH != 0 else 0)):
start = KNN_MAX_BATCH * chunk
end = start + KNN_MAX_BATCH
# for some reason, the code below is 10x slower when run in a Jupyter notebook
# not sure why...
indices_ = sess.run(topk_indices, {db_tensor: quilt_db_reshaped, query_imgs: patches[:, start:end]})
for i in indices_:
ind.append(np.random.choice(i))
synth = np.zeros((299, 299, 3))
idx = 0
for iy in range(vert_blocks):
for ix in range(horiz_blocks):
posx = tile_skip*ix
posy = tile_skip*iy
tile = quilt_db[ind[idx]]
if not graphcut:
synth[posy:posy+TILE_SIZE, posx:posx+TILE_SIZE, :] = tile
else:
assign_block(ix, iy, tile, synth)
idx += 1
return synth
return quilt
# x is a square image (3-tensor)
def defend_crop(x, crop_size=90, ensemble_size=30):
x_size = tf.to_float(x.shape[1])
frac = crop_size/x_size
start_fraction_max = (x_size - crop_size)/x_size
def randomizing_crop(x):
start_x = tf.random_uniform((), 0, start_fraction_max)
start_y = tf.random_uniform((), 0, start_fraction_max)
return tf.image.crop_and_resize([x], boxes=[[start_y, start_x, start_y+frac, start_x+frac]],
box_ind=[0], crop_size=[crop_size, crop_size])
return tf.concat([randomizing_crop(x) for _ in range(ensemble_size)], axis=0)