-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathmodels.py
401 lines (326 loc) · 12.2 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
"""
License: Apache 2.0
Author: Ashley Gritzman
E-mail: ashley.gritzman@za.ibm.com
"""
# Public modules
import tensorflow as tf
import tensorflow.contrib.slim as slim
import numpy as np
# My modules
from config import FLAGS
import utils as utl
import layers as lyr
import em_routing as em
# Get logger that has already been created in config.py
import daiquiri
logger = daiquiri.getLogger(__name__)
#------------------------------------------------------------------------------
# CAPSNET FOR SMALLNORB
#------------------------------------------------------------------------------
def build_arch_smallnorb(input, is_train: bool, num_classes: int):
logger.info('input shape: {}'.format(input.get_shape()))
batch_size = int(input.get_shape()[0])
spatial_size = int(input.get_shape()[1])
# xavier initialization is necessary here to provide higher stability
# initializer = tf.truncated_normal_initializer(mean=0.0, stddev=0.01)
# instead of initializing bias with constant 0, a truncated normal
# initializer is exploited here for higher stability
bias_initializer = tf.truncated_normal_initializer(mean=0.0, stddev=0.01)
# AG 13/11/2018
# In response to a question on OpenReview, Hinton et al. wrote the
# following:
# "We use a weight decay loss with a small factor of .0000002 rather than
# the reconstruction loss."
# https://openreview.net/forum?id=HJWLfGWRb¬eId=rJeQnSsE3X
weights_regularizer = tf.contrib.layers.l2_regularizer(0.0000002)
# weights_initializer=initializer,
with slim.arg_scope([slim.conv2d],
trainable = is_train,
biases_initializer = bias_initializer,
weights_regularizer = weights_regularizer):
#----- Batch Norm -----#
output = slim.batch_norm(
input,
center=False,
is_training=is_train,
trainable=is_train)
#----- Convolutional Layer 1 -----#
with tf.variable_scope('relu_conv1') as scope:
output = slim.conv2d(output,
num_outputs=FLAGS.A,
kernel_size=[5, 5],
stride=2,
padding='SAME',
scope=scope,
activation_fn=tf.nn.relu)
spatial_size = int(output.get_shape()[1])
assert output.get_shape() == [batch_size, spatial_size, spatial_size,
FLAGS.A]
logger.info('relu_conv1 output shape: {}'.format(output.get_shape()))
#----- Primary Capsules -----#
with tf.variable_scope('primary_caps') as scope:
pose = slim.conv2d(output,
num_outputs=FLAGS.B * 16,
kernel_size=[1, 1],
stride=1,
padding='VALID',
scope='pose',
activation_fn=None)
activation = slim.conv2d(
output,
num_outputs=FLAGS.B,
kernel_size=[1, 1],
stride=1,
padding='VALID',
scope='activation',
activation_fn=tf.nn.sigmoid)
spatial_size = int(pose.get_shape()[1])
pose = tf.reshape(pose, shape=[batch_size, spatial_size, spatial_size,
FLAGS.B, 16], name='pose')
activation = tf.reshape(
activation,
shape=[batch_size, spatial_size, spatial_size, FLAGS.B, 1],
name="activation")
assert pose.get_shape() == [batch_size, spatial_size, spatial_size,
FLAGS.B, 16]
assert activation.get_shape() == [batch_size, spatial_size, spatial_size,
FLAGS.B, 1]
logger.info('primary_caps pose shape: {}'.format(pose.get_shape()))
logger.info('primary_caps activation shape {}'
.format(activation.get_shape()))
tf.summary.histogram("activation", activation)
#----- Conv Caps 1 -----#
# activation_in: (64, 7, 7, 8, 1)
# pose_in: (64, 7, 7, 16, 16)
# activation_out: (64, 5, 5, 32, 1)
# pose_out: (64, 5, 5, 32, 16)
activation, pose = lyr.conv_caps(
activation_in = activation,
pose_in = pose,
kernel = 3,
stride = 2,
ncaps_out = FLAGS.C,
name = 'lyr.conv_caps1',
weights_regularizer = weights_regularizer)
#----- Conv Caps 2 -----#
# activation_in: (64, 7, 7, 8, 1)
# pose_in: (64, 7, 7, 16, 1)
# activation_out: (64, 5, 5, 32, 1)
# pose_out: (64, 5, 5, 32, 16)
activation, pose = lyr.conv_caps(
activation_in = activation,
pose_in = pose,
kernel = 3,
stride = 1,
ncaps_out = FLAGS.D,
name = 'lyr.conv_caps2',
weights_regularizer = weights_regularizer)
#----- Class Caps -----#
# activation_in: (64, 5, 5, 32, 1)
# pose_in: (64, 5, 5, 32, 16)
# activation_out: (64, 5)
# pose_out: (64, 5, 16)
activation_out, pose_out = lyr.fc_caps(
activation_in = activation,
pose_in = pose,
ncaps_out = num_classes,
name = 'class_caps',
weights_regularizer = weights_regularizer)
return {'scores': activation_out, 'pose_out': pose_out}
#------------------------------------------------------------------------------
# BASELINE CNN FOR SMALLNORB
#------------------------------------------------------------------------------
def build_arch_baseline(input, is_train: bool, num_classes: int):
"""Spread loss.
"As the baseline for our experiments on generalization to novel viewpoints
we train a CNN which has two convolutional layers with 32 and 64 channels
respectively. Both layers have a kernel size of 5 and a stride of 1 with a
2 × 2 max pooling. The third layer is a 1024 unit fully connected layer
with dropout and connects to the 5-way softmax output layer. All hidden units
use the ReLU non-linearity. We use the same image preparation for the CNN
baseline as described above for the capsule network. Our baseline CNN was the
result of an extensive hyperparameter search over filter sizes, numbers of
channels and learning rates.
See Hinton et al. "Matrix Capsules with EM Routing" equation (3).
Author:
Ashley Gritzman 19/10/2018
Credit:
Adapted from Suofei Zhang's implementation on GitHub, "Matrix-Capsules-
EM-Tensorflow"
https://github.com/www0wwwjs1/Matrix-Capsules-EM-Tensorflow
Args:
input:
is_train:
num_classes:
Returns:
output:
mean loss for entire batch
(scalar)
"""
bias_initializer = tf.truncated_normal_initializer(
mean=0.0, stddev=0.01)
# The paper didnot mention any regularization, a common l2 regularizer to
# weights is added here
weights_regularizer = tf.contrib.layers.l2_regularizer(5e-04)
logger.info('input shape: {}'.format(input.get_shape()))
# weights_initializer=initializer,
with slim.arg_scope([slim.conv2d, slim.fully_connected],
trainable=is_train,
biases_initializer=bias_initializer,
weights_regularizer=weights_regularizer):
#----- Conv1 -----#
with tf.variable_scope('relu_conv1') as scope:
output = slim.conv2d(
input,
num_outputs=32,
kernel_size=[5, 5],
stride=1,
padding='SAME',
scope=scope,
activation_fn=tf.nn.relu)
output = slim.max_pool2d(output, [2, 2], scope='max_2d_layer1')
logger.info('output shape: {}'.format(output.get_shape()))
#----- Conv2 -----#
with tf.variable_scope('relu_conv2') as scope:
output = slim.conv2d(
output,
num_outputs=64,
kernel_size=[5, 5],
stride=1,
padding='SAME',
scope=scope,
activation_fn=tf.nn.relu)
output = slim.max_pool2d(output, [2, 2], scope='max_2d_layer2')
logger.info('output shape: {}'.format(output.get_shape()))
#----- FC with Dropout -----#
output = slim.flatten(output)
output = slim.fully_connected(
output, 1024,
scope='relu_fc3',
activation_fn=tf.nn.relu)
logger.info('output shape: {}'.format(output.get_shape()))
output = slim.dropout(output, 0.5, scope='dropout')
#----- FC final layer -----#
logits = slim.fully_connected(
output,
num_classes,
scope='final_layer',
activation_fn=None)
logger.info('output shape: {}'.format(output.get_shape()))
return {'scores': logits}
#------------------------------------------------------------------------------
# LOSS FUNCTIONS
#------------------------------------------------------------------------------
def spread_loss(scores, y):
"""Spread loss.
"In order to make the training less sensitive to the initialization and
hyper-parameters of the model, we use “spread loss” to directly maximize the
gap between the activation of the target class (a_t) and the activation of the
other classes. If the activation of a wrong class, a_i, is closer than the
margin, m, to at then it is penalized by the squared distance to the margin."
See Hinton et al. "Matrix Capsules with EM Routing" equation (3).
Author:
Ashley Gritzman 19/10/2018
Credit:
Adapted from Suofei Zhang's implementation on GitHub, "Matrix-Capsules-
EM-Tensorflow"
https://github.com/www0wwwjs1/Matrix-Capsules-EM-Tensorflow
Args:
scores:
scores for each class
(batch_size, num_class)
y:
index of true class
(batch_size, 1)
Returns:
loss:
mean loss for entire batch
(scalar)
"""
with tf.variable_scope('spread_loss') as scope:
batch_size = int(scores.get_shape()[0])
# AG 17/09/2018: modified margin schedule based on response of authors to
# questions on OpenReview.net:
# https://openreview.net/forum?id=HJWLfGWRb
# "The margin that we set is:
# margin = 0.2 + .79 * tf.sigmoid(tf.minimum(10.0, step / 50000.0 - 4))
# where step is the training step. We trained with batch size of 64."
global_step = tf.to_float(tf.train.get_global_step())
m_min = 0.2
m_delta = 0.79
m = (m_min
+ m_delta * tf.sigmoid(tf.minimum(10.0, global_step / 50000.0 - 4)))
num_class = int(scores.get_shape()[-1])
y = tf.one_hot(y, num_class, dtype=tf.float32)
# Get the score of the target class
# (64, 1, 5)
scores = tf.reshape(scores, shape=[batch_size, 1, num_class])
# (64, 5, 1)
y = tf.expand_dims(y, axis=2)
# (64, 1, 5)*(64, 5, 1) = (64, 1, 1)
at = tf.matmul(scores, y)
# Compute spread loss, paper eq (3)
loss = tf.square(tf.maximum(0., m - (at - scores)))
# Sum losses for all classes
# (64, 1, 5)*(64, 5, 1) = (64, 1, 1)
# e.g loss*[1 0 1 1 1]
loss = tf.matmul(loss, 1. - y)
# Compute mean
loss = tf.reduce_mean(loss)
return loss
def cross_ent_loss(logits, y):
"""Cross entropy loss.
Author:
Ashley Gritzman 06/05/2019
Args:
logits:
logits for each class
(batch_size, num_class)
y:
index of true class
(batch_size, 1)
Returns:
loss:
mean loss for entire batch
(scalar)
"""
loss = tf.losses.sparse_softmax_cross_entropy(labels=y, logits=logits)
loss = tf.reduce_mean(loss)
return loss
def total_loss(scores, y):
"""total_loss = spread_loss + regularization_loss.
If the flag to regularize is set, the the total loss is the sum of the spread loss and the regularization loss.
Author:
Ashley Gritzman 19/10/2018
Credit:
Adapted from Suofei Zhang's implementation on GitHub, "Matrix-Capsules-
EM-Tensorflow"
https://github.com/www0wwwjs1/Matrix-Capsules-EM-Tensorflow
Args:
scores:
scores for each class
(batch_size, num_class)
y:
index of true class
(batch_size, 1)
Returns:
total_loss:
mean total loss for entire batch
(scalar)
"""
with tf.variable_scope('total_loss') as scope:
# spread loss
sprd_loss = spread_loss(scores, y)
if FLAGS.weight_reg:
# Regularization
regularization = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
reg_loss = tf.add_n(regularization)
total_loss = sprd_loss + reg_loss
tf.summary.scalar('spread_loss', sprd_loss)
tf.summary.scalar('regularization_loss', reg_loss)
else:
# No regularization
total_loss = sprd_loss
tf.summary.scalar('spread_loss', sprd_loss)
return total_loss