-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathBerlekamp-Massey_Test.cpp
128 lines (114 loc) · 2.74 KB
/
Berlekamp-Massey_Test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#include<cassert>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int MOD = 1000000007;
int inverse(int a) {
return a == 1 ? 1 : (long long)(MOD - MOD / a) * inverse(MOD % a) % MOD;
}
// Berlekamp-Massey Algorithm
// Requirement: const MOD, inverse(int)
// Input: vector<int> the first elements of the sequence
// Output: vector<int> the recursive equation of the given sequence
// Example: In: {1, 1, 2, 3} Out: {1, 1000000006, 1000000006} (MOD = 1e9+7)
struct Poly {
vector<int> a;
Poly() { a.clear(); }
Poly(vector<int> &a): a(a) {}
int length() const { return a.size(); }
Poly move(int d) {
vector<int> na(d, 0);
na.insert(na.end(), a.begin(), a.end());
return Poly(na);
}
int calc(vector<int> &d, int pos) {
int ret = 0;
for (int i = 0; i < (int)a.size(); ++i) {
if ((ret += (long long)d[pos - i] * a[i] % MOD) >= MOD) {
ret -= MOD;
}
}
return ret;
}
Poly operator - (const Poly &b) {
vector<int> na(max(this->length(), b.length()));
for (int i = 0; i < (int)na.size(); ++i) {
int aa = i < this->length() ? this->a[i] : 0,
bb = i < b.length() ? b.a[i] : 0;
na[i] = (aa + MOD - bb) % MOD;
}
return Poly(na);
}
};
Poly operator * (const int &c, const Poly &p) {
vector<int> na(p.length());
for (int i = 0; i < (int)na.size(); ++i) {
na[i] = (long long)c * p.a[i] % MOD;
}
return na;
}
vector<int> solve(vector<int> a) {
int n = a.size();
Poly s, b;
s.a.push_back(1), b.a.push_back(1);
for (int i = 1, j = 0, ld = a[0]; i < n; ++i) {
int d = s.calc(a, i);
if (d) {
if ((s.length() - 1) * 2 <= i) {
Poly ob = b;
b = s;
s = s - (long long)d * inverse(ld) % MOD * ob.move(i - j);
j = i;
ld = d;
} else {
s = s - (long long)d * inverse(ld) % MOD * b.move(i - j);
}
}
}
return s.a;
}
//end of template
int main() {
int T = 1000;
for (int i = 0; i < T; ++i) {
cout << "Test " << i + 1 << endl;
int n = rand() % 1000 + 1;
vector<int> s;
for (int i = 0; i < n; ++i) {
s.push_back(rand() % (MOD - 1) + 1);
}
vector<int> a;
for (int i = 0; i < n; ++i) {
a.push_back(rand() % MOD);
}
for (int i = 0; i < n; ++i) {
int na = 0;
for (int j = 0; j < n; ++j) {
if ((na += (long long)a[n + i - 1 - j] * s[j] % MOD) >= MOD) {
na -= MOD;
}
}
a.push_back(na);
}
vector<int> ss = solve(a);
/*
for (int i = 0; i < n; ++i) {
printf("%d%c", s[i], i == n - 1 ? '\n' : ' ');
}
cout << endl;
for (int i = 0; i < n; ++i) {
printf("%d%c", ss[i + 1], i == n - 1 ? '\n' : ' ');
}
*/
assert((int)ss.size() == n + 1);
assert(ss[0] == 1);
for (int i = 0; i < n; ++i) {
assert((ss[i + 1] + s[i]) % MOD == 0);
}
}
cout << "All tests OK!!!" << endl;
return 0;
}