-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathLinearRecurrence.cpp
64 lines (59 loc) · 1.61 KB
/
LinearRecurrence.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
// Calculating kth term of linear recurrence sequence
// Complexity: init O(n^2log) query O(n^2logk)
// Requirement: const LOG const MOD
// Input(constructor): vector<int> - first n terms
// vector<int> - transition function
// Output(calc(k)): int - the kth term mod MOD
// Example: In: {1, 1} {2, 1} an = 2an-1 + an-2
// Out: calc(3) = 3, calc(10007) = 71480733 (MOD 1e9+7)
struct LinearRec {
int n;
vector<int> first, trans;
vector<vector<int> > bin;
vector<int> add(vector<int> &a, vector<int> &b) {
vector<int> result(n * 2 + 1, 0);
//You can apply constant optimization here to get a ~10x speedup
for (int i = 0; i <= n; ++i) {
for (int j = 0; j <= n; ++j) {
if ((result[i + j] += (long long)a[i] * b[j] % MOD) >= MOD) {
result[i + j] -= MOD;
}
}
}
for (int i = 2 * n; i > n; --i) {
for (int j = 0; j < n; ++j) {
if ((result[i - 1 - j] += (long long)result[i] * trans[j] % MOD) >= MOD) {
result[i - 1 - j] -= MOD;
}
}
result[i] = 0;
}
result.erase(result.begin() + n + 1, result.end());
return result;
}
LinearRec(vector<int> &first, vector<int> &trans):first(first), trans(trans) {
n = first.size();
vector<int> a(n + 1, 0);
a[1] = 1;
bin.push_back(a);
for (int i = 1; i < LOG; ++i) {
bin.push_back(add(bin[i - 1], bin[i - 1]));
}
}
int calc(int k) {
vector<int> a(n + 1, 0);
a[0] = 1;
for (int i = 0; i < LOG; ++i) {
if (k >> i & 1) {
a = add(a, bin[i]);
}
}
int ret = 0;
for (int i = 0; i < n; ++i) {
if ((ret += (long long)a[i + 1] * first[i] % MOD) >= MOD) {
ret -= MOD;
}
}
return ret;
}
};