-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathspell_checker.py
executable file
·419 lines (350 loc) · 15.2 KB
/
spell_checker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import pickle
import math
import os
from .normalizer import Normalizer
from .tokenizer import Tokenizer
from .data_helper import DataHelper
class SpellCheck:
def __init__(self):
self.normalizer = Normalizer()
self.tokenizer = Tokenizer()
self.data_helper = DataHelper()
self.dir_path = os.path.dirname(os.path.realpath(__file__)) + "/"
self.bigram_lm = self.data_helper.load_var(self.dir_path + "resource/spell/mybigram_lm.pckl")
self.onegram_lm = self.data_helper.load_var(self.dir_path + "resource/spell/onegram.pckl")
self.ingroup_chars = [{'ا', 'آ', 'ع'},
{'ت', 'ط'},
{'ث', 'س', 'ص'},
{'ح', 'ه'},
{'ذ', 'ز', 'ض', 'ظ'},
{'ق', 'غ'}]
def deletion(self, word):
p_list = []
for k in range(len(word)):
if word[k] == '-' or word[k] == '#':
continue
begin = word[:k]
end = word[k+1:]
tmp_string = begin + end
p_list.append(tmp_string)
return p_list
def splitting(self, word):
p_list = set([])
delimator = '-'
for i, char in enumerate(word):
begin = word[:i].strip('\u200c')
end = word[i:].strip('\u200c')
tmp_string = begin + delimator + end
p_list.add(tmp_string)
return list(p_list)
def insertion(self, word):
p_list = []
alphabet = ['ا', 'آ', 'ب', 'پ', 'ت', 'ث', 'ج', 'چ', 'ح', 'خ',
'د', 'ذ', 'ر', 'ز', 'ژ', 'س', 'ش', 'ص', 'ض', 'ط',
'ظ', 'ع', 'غ', 'ف', 'ق', 'ک', 'گ', 'ل', 'م', 'ن',
'و', 'ه', 'ی', '']
for k in range(len(word)+1):
for char in alphabet:
begin = word[:k]
end = word[k:]
tmp_string = begin + char + end
p_list.append(tmp_string)
return p_list
def substitution(self, word):
p_list = []
alphabet = ['ا', 'آ', 'ب', 'پ', 'ت', 'ث', 'ج', 'چ', 'ح', 'خ',
'د', 'ذ', 'ر', 'ز', 'ژ', 'س', 'ش', 'ص', 'ض', 'ط',
'ظ', 'ع', 'غ', 'ف', 'ق', 'ک', 'گ', 'ل', 'م', 'ن',
'و', 'ه', 'ی']
for i, char in enumerate(word):
if char == '-' or char == '#':
continue
for c in alphabet:
begin = word[:i]
end = word[i+1:]
tmp_string = begin + c + end
p_list.append(tmp_string)
return p_list
def transposition(self, word):
p_list = []
word = list(word)
tmp_word = word[:]
for k1 in range(len(word)):
k2 = k1 + 1
if k2 == len(word):
break
tmp = tmp_word[k1]
tmp_word[k1] = tmp_word[k2]
tmp_word[k2] = tmp
tmp_string = ''.join(tmp_word)
p_list.append(tmp_string)
tmp_word = word[:]
return p_list
def build_similar_words(self, word_seq, index, zi, operation):
z_list = []
o_list = []
if operation == "Spell":
tmp = self.deletion(zi)
for i in tmp:
z_list.append(i)
o_list.append("Deletion")
tmp = self.insertion(zi)
for i in tmp:
z_list.append(i)
o_list.append("Insertion")
tmp = self.substitution(zi)
for i in tmp:
z_list.append(i)
o_list.append("Substitution")
tmp = self.transposition(zi)
for i in tmp:
z_list.append(i)
o_list.append("Transposition")
elif operation == "Split":
tmp = self.splitting(zi)
for i in tmp:
z_list.append(i)
o_list.append("Split")
elif operation == "Merg":
if index < len(word_seq)-1:
tmp = zi + '#' + word_seq[index+1]
z_list.append(tmp)
o_list.append("Merg")
return [z_list, o_list]
def bigram_markov_factor(self, yi_1, yi):
bigram_counts, total_count = self.bigram_lm
tmp = (yi_1, yi)
if tmp in bigram_counts.keys():
x = bigram_counts[tmp]
x = float(x)/total_count
x = math.log2(x)
return x
else:
return -28
def get_word_probability(self, word):
lex_dict = self.onegram_lm[0]
total_words = self.onegram_lm[1]
if word in lex_dict:
count = lex_dict[word]
logprob = math.log2(float(count)/total_words)
return logprob
else:
return -50.0
def isword(self, x):
if abs(x.find('#') - x.find('-')) == 1:
return False
dash_idx = x.find('-')
if dash_idx != -1:
first = x[:dash_idx] # from beginning to n (n not included)
secound = x[dash_idx+1:] # n+1 through end of string
if self.get_word_probability(first) < -49:
return False
elif self.get_word_probability(secound) < -49:
return False
else:
return True
sharp_idx = x.find('#')
if sharp_idx != -1:
begin = x[:sharp_idx]
end = x[sharp_idx+1:]
tmp_str = begin + end
if self.get_word_probability(tmp_str) < -49:
return False
else:
return True
else:
if self.get_word_probability(x) < -49:
return False
else:
return True
def get_possible_words(self, word_seq, index):
wi = word_seq[index]
possible_words = []
operation_list = []
possible_words.append(wi)
operation_list.append("Nothing")
if len(wi) == 1:
return possible_words, operation_list
'''Merg Split Spell'''
[c_list, o_list] = self.build_similar_words(word_seq, index, wi, "Merg")
for i, c in enumerate(c_list):
if self.isword(c):
possible_words.append(c)
operation_list.append(o_list[i])
[c_list, o_list] = self.build_similar_words(word_seq, index, wi, "Split")
for i, c in enumerate(c_list):
if self.isword(c):
possible_words.append(c)
operation_list.append(o_list[i])
[c_list, o_list] = self.build_similar_words(word_seq, index, wi, "Spell")
for i, c in enumerate(c_list):
if self.isword(c):
possible_words.append(c)
operation_list.append(o_list[i])
return possible_words, operation_list
def select_n_best(self, c_list, o_list, n=3):
my_dict = {}
map_dict = {}
for i, word in enumerate(c_list):
if o_list[i] == 'Merg':
tmp_word = word.replace("#", "")
prob = self.get_word_probability(tmp_word)
elif o_list[i] == 'Split':
begin = word.split('-')[0]
end = word.split('-')[1]
prob = float(self.get_word_probability(begin) + self.get_word_probability(end))/2
else:
prob = self.get_word_probability(word)
if word not in my_dict:
my_dict[word] = prob
map_dict[word] = o_list[i]
n_best = set(sorted(my_dict, key=my_dict.get, reverse=True)[:n])
n_best.add(c_list[0])
n_best = list(n_best)
n_best_op = [map_dict[key] for key in n_best]
return n_best, n_best_op
def is_ingroup_substitution(self, main_word, candidate_word):
main_word = list(main_word)
candidate_word = list(candidate_word)
flag = False
for i, c in enumerate(main_word):
if c == candidate_word[i]:
continue
else:
flag = False
for l in self.ingroup_chars:
if c in l and candidate_word[i] in l:
flag = True
break
break
return flag
def select_correct_spell(self, candidate_list, next_candidates, next_next_candidates, prev_word, current_word):
best_candidate = None
best_operation = None
best_score = -1000
next_next_candidate_list = []
next_next_operation_list = []
candidate_list, operation_list = candidate_list
if next_candidates is not None:
next_candidate_list, next_operation_list = next_candidates
else:
next_candidate_list, next_operation_list = [None], "Nothing"
if next_next_candidates is not None:
next_next_candidate_list, next_next_operation_list = next_next_candidates
else:
next_candidate_list, next_operation_list = [None], "Nothing"
for i, candidate in enumerate(candidate_list):
operation = operation_list[i]
if operation == "Split":
begin = candidate[:candidate.find('-')]
end = candidate[candidate.find('-')+1:]
candidate = begin
next_word = end
onegram_score = self.get_word_probability(candidate)
bigram_score_with_prev = self.bigram_markov_factor(prev_word, candidate)
bigram_score_next = -1000
tmp_score_next = self.bigram_markov_factor(candidate, next_word)
for j, next_next_word in enumerate(next_candidate_list):
opt = next_operation_list[j]
if opt == 'Merg':
next_next_word = next_next_word.replace("#", "")
elif opt == 'Split':
next_next_word = next_next_word.split('-')[0]
tmp_score_next_next = self.bigram_markov_factor(next_word, next_next_word)
if tmp_score_next_next > bigram_score_next:
bigram_score_next = tmp_score_next_next
bigram_score_next = float(bigram_score_next + tmp_score_next)/2
elif operation == "Merg":
begin = candidate[:candidate.find('#')]
end = candidate[candidate.find('#')+1:]
candidate = begin + end
onegram_score = self.get_word_probability(candidate)
bigram_score_with_prev = self.bigram_markov_factor(prev_word, candidate)
bigram_score_next = -1000
for j, next_next_word in enumerate(next_next_candidate_list):
opt = next_next_operation_list[j]
if opt == 'Merg':
next_next_word = next_next_word.replace("#", "")
elif opt == 'Split':
next_next_word = next_next_word.split('-')[0]
tmp_score = self.bigram_markov_factor(candidate, next_next_word)
if tmp_score > bigram_score_next:
bigram_score_next = tmp_score
else:
onegram_score = self.get_word_probability(candidate)
bigram_score_with_prev = self.bigram_markov_factor(prev_word, candidate)
bigram_score_next = -1000
for j, next_word in enumerate(next_candidate_list):
opt = next_operation_list[j]
if opt == 'Merg':
next_word = next_word.replace("#", "")
elif opt == 'Split':
next_word = next_word.split('-')[0]
tmp_score = self.bigram_markov_factor(candidate, next_word)
if tmp_score > bigram_score_next:
bigram_score_next = tmp_score
if operation == 'Substitution':
if self.is_ingroup_substitution(current_word, candidate):
onegram_score += 20
else:
onegram_score += 10
elif operation == 'Deletion' or operation == 'Insertion':
onegram_score += 5
if '\u200c' in candidate and '\u200c' not in current_word:
onegram_score += 5
elif operation == 'Split' or operation == 'Merg':
onegram_score += 7
elif operation == 'Nothing':
onegram_score += 20
score = 1*onegram_score + 0.7*bigram_score_with_prev + 0.7*bigram_score_next
if score > best_score:
best_operation = operation
best_candidate = candidate_list[i]
best_score = score
return best_candidate, best_operation
def spell_corrector(self, doc_string):
words = self.tokenizer.tokenize_words(self.normalizer.normalize(doc_string))
best_o_list = []
best_candidates_list = []
yi_1 = None
merged_before = False
suggest_list = []
for i, word in enumerate(words):
[c_list, o_list] = self.get_possible_words(words, i)
n_best = self.select_n_best(c_list, o_list, n=15)
suggest_list.append(n_best)
for i, candidate_list in enumerate(suggest_list):
if merged_before:
continue
if (i+2) < len(suggest_list):
next_candidates = suggest_list[i+1]
next_next_candidates = suggest_list[i+2]
elif (i+1) < len(suggest_list):
next_candidates = suggest_list[i+1]
next_next_candidates = None
else:
next_candidates = None
next_next_candidates = None
best_candidate, best_operation = self.select_correct_spell(candidate_list, next_candidates,
next_next_candidates, yi_1, words[i])
merged_before = False
if best_operation == "Split":
begin = best_candidate.split('-')[0]
end = best_candidate.split('-')[1]
best_candidate = [begin, end]
if best_operation == "Merg":
best_candidate = best_operation.replace("#", "")
merged_before = True
if type(best_candidate) == str:
best_candidate = [best_candidate]
best_o_list.append(best_operation)
best_candidates_list.extend(best_candidate)
yi_1 = best_candidate[-1]
res = " ".join(best_candidates_list)
ops = " ".join(best_o_list)
return res
if __name__ == "__main__":
doc_string = "نمازگذاران وارد مسلی شدند."
myspell_checker = SpellCheck()
res = myspell_checker.spell_corrector(doc_string)
print(res)