-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathknn.py
151 lines (137 loc) · 5.93 KB
/
knn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import argparse
import numpy as np
import os
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import itertools
# import seaborn as sns
# sns.set_style('darkgrid')
# sns.set_palette('muted')
# sns.set_context("notebook", font_scale=1.5,
# rc={"lines.linewidth": 2.5})
# RS = 123
def main():
parser = argparse.ArgumentParser()
parser.add_argument('init_checkpoint', type=str)
parser.add_argument('encoder_type', type=str)
parser.add_argument('set', type=str)
parsed_args = parser.parse_args()
init_checkpoint = parsed_args.init_checkpoint
encoder_type = parsed_args.encoder_type
datasetTesting = parsed_args.set
s = init_checkpoint.split('/')[-1]
namecheckpoint = (s.split('_')[1]).split('.ckpt')[0]
dataset = 'training'
datasetValidation = 'validation'
path = str.join('/', init_checkpoint.split('/')[:-1])
data_dir = '{}/{}_{}_{}'.format(path, dataset, encoder_type, namecheckpoint)
data_dirTest = '{}/{}_{}_{}'.format(path, datasetTesting, encoder_type, namecheckpoint)
# data_dirValidation = '{}/{}_{}_{}'.format(path, datasetValidation, encoder_type, namecheckpoint)
featurestraining = []
labelstraining = []
# featuresvalidation = []
# labelsvalidation = []
featurestest = []
labelstest = []
k = 15
num_frames = 12
sample_length = 5
if os.path.isfile('{}/{}_labels.npy'.format(data_dir, dataset)) \
and os.path.isfile('{}/{}_data.npy'.format(data_dir, dataset)):
featurestraining = np.load('{}/{}_data.npy'.format(data_dir, dataset))
featurestraining = np.reshape(featurestraining, (featurestraining.shape[0], -1))
labelstraining = np.load('{}/{}_labels.npy'.format(data_dir, dataset))
print(labelstraining.shape[0])
if os.path.isfile('{}/{}_labels.npy'.format(data_dirTest, datasetTesting)) \
and os.path.isfile('{}/{}_data.npy'.format(data_dirTest, datasetTesting)):
featurestest = np.load('{}/{}_data.npy'.format(data_dirTest, datasetTesting))
featurestest = np.reshape(featurestest, (featurestest.shape[0], -1))
labelstest = np.load('{}/{}_labels.npy'.format(data_dirTest, datasetTesting))
print(labelstest.shape[0])
# if os.path.isfile('{}/{}_labels.npy'.format(data_dirValidation, datasetValidation)) \
# and os.path.isfile('{}/{}_data.npy'.format(data_dirValidation, datasetValidation)):
# featuresvalidation = np.load('{}/{}_data.npy'.format(data_dirValidation, datasetValidation))
# labelsvalidation = np.load('{}/{}_labels.npy'.format(data_dirValidation, datasetValidation))
# print(labelsvalidation.shape[0])
labelstest = np.argmax(labelstest, axis=1)
labelstraining = np.argmax(labelstraining, axis=1)
# labelsvalidation = np.argmax(labelsvalidation, axis=1)
# plot TSNE
# x = TSNE(n_components=2, random_state=0, verbose=1, perplexity=40, n_iter=300).fit_transform(featurestest)
# num_classes = len(np.unique(labelstest2))
# palette = np.array(sns.color_palette("hls", num_classes))
# f = plt.figure(figsize=(8, 8))
# ax = plt.subplot(aspect='equal')
# sc = ax.scatter(x[:, 0], x[:, 1], lw=0, s=40, c=palette[labelstest2.astype(np.int)])
# plt.xlim(-25, 25)
# plt.ylim(-25, 25)
# ax.axis('off')
# ax.axis('tight')
#
# # add the labels for each digit corresponding to the label
# txts = []
#
# for i in range(num_classes):
#
# # Position of each label at median of data points.
# xtext, ytext = np.median(x[labelstest2 == i, :], axis=0)
# txt = ax.text(xtext, ytext, str(i), fontsize=24)
# txts.append(txt)
#
# # plt.figure(2)
# # plt.scatter(x[:, 0], x[:, 1], c=palette[labelstest2.astype(np.int)], s=3)
# plt.figure()
filefinal = open('{}_{}_knn_value.txt'.format(data_dirTest, datasetTesting), 'w')
clf = KNeighborsClassifier(n_neighbors=k)
# Train the classifier
clf.fit(featurestraining, labelstraining)
y_pred = clf.predict(featurestest)
counter = 0
percentage2 = labelstest.shape[0]
for i in range(percentage2):
if y_pred[i] == labelstest[i]:
counter += 1
perc = counter / float(percentage2)
print('Accuracy={} k={}\n'.format(perc, k))
filefinal.write('Accuracy={} k={}\n'.format(perc, k))
filefinal.close()
# plot confusion matrix
# cm = confusion_matrix(labelstest, y_pred)
# classes = ['Clapping', 'Snapping fingers', 'Speaking', 'Whistling', 'Playing kendama', 'Clicking', 'Typing', \
# 'Knocking', 'Hammering', 'Peanut breaking', 'Paper ripping', 'Plastic crumpling', 'Paper shaking',
# 'Stick dropping']
# plot_confusion_matrix(cm, classes)
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=90)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.tight_layout()
plt.show()
if __name__ == '__main__':
main()