forked from qiuqiao/SOFA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
152 lines (135 loc) · 4.63 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import pathlib
import click
import lightning as pl
import torch
import yaml
from torch.utils.data import DataLoader
from dataset import MixedDataset, WeightedBinningAudioBatchSampler, collate_fn
from modules.task.forced_alignment import LitForcedAlignmentTask
@click.command()
@click.option(
"--config_path",
"-c",
type=str,
default="configs/train_config.yaml",
show_default=True,
help="training config path",
)
@click.option(
"--data_folder",
"-d",
type=str,
default="data",
show_default=True,
help="data folder path",
)
@click.option(
"--pretrained_model_path",
"-p",
type=str,
default=None,
show_default=True,
help="pretrained model path. if None, training from scratch",
)
@click.option(
"--resume",
"-r",
is_flag=True,
default=False,
show_default=True,
help="resume training from checkpoint",
)
def main(config_path: str, data_folder: str, pretrained_model_path, resume):
data_folder = pathlib.Path(data_folder)
os.environ[
"TORCH_CUDNN_V8_API_ENABLED"
] = "1" # Prevent unacceptable slowdowns when using 16 precision
with open(config_path, "r") as f:
config = yaml.safe_load(f)
with open(data_folder / "binary" / "vocab.yaml") as f:
vocab = yaml.safe_load(f)
vocab_text = yaml.safe_dump(vocab)
with open(data_folder / "binary" / "global_config.yaml") as f:
config_global = yaml.safe_load(f)
config.update(config_global)
torch.set_float32_matmul_precision(config["float32_matmul_precision"])
pl.seed_everything(config["random_seed"], workers=True)
# define dataset
num_workers = config['dataloader_workers']
train_dataset = MixedDataset(
config["data_augmentation_size"], data_folder / "binary", prefix="train"
)
train_sampler = WeightedBinningAudioBatchSampler(
train_dataset.get_label_types(),
train_dataset.get_wav_lengths(),
config["oversampling_weights"],
config["batch_max_length"] / (2 if config["data_augmentation_size"] > 0 else 1),
config["binning_length"],
config["drop_last"],
)
train_dataloader = DataLoader(
dataset=train_dataset,
batch_sampler=train_sampler,
collate_fn=collate_fn,
num_workers=num_workers,
persistent_workers=num_workers > 0,
pin_memory=True,
prefetch_factor=(2 if num_workers > 0 else None),
)
valid_dataset = MixedDataset(0, data_folder / "binary", prefix="valid")
valid_dataloader = DataLoader(
dataset=valid_dataset,
batch_size=1,
shuffle=False,
collate_fn=collate_fn,
num_workers=num_workers,
persistent_workers=num_workers > 0,
)
# model
lightning_alignment_model = LitForcedAlignmentTask(
vocab_text,
config["model"],
config["melspec_config"],
config["optimizer_config"],
config["loss_config"],
config["data_augmentation_size"] > 0,
)
# trainer
trainer = pl.Trainer(
accelerator=config["accelerator"],
devices=config["devices"],
precision=config["precision"],
gradient_clip_val=config["gradient_clip_val"],
gradient_clip_algorithm=config["gradient_clip_algorithm"],
default_root_dir=str(pathlib.Path("ckpt") / config["model_name"]),
val_check_interval=config["val_check_interval"],
check_val_every_n_epoch=None,
max_epochs=-1,
max_steps=config["optimizer_config"]["total_steps"],
)
ckpt_path = None
if pretrained_model_path is not None:
# use pretrained model TODO: load pretrained model
pretrained = LitForcedAlignmentTask.load_from_checkpoint(pretrained_model_path)
lightning_alignment_model.load_pretrained(pretrained)
elif resume:
# resume training state
ckpt_path_list = (pathlib.Path("ckpt") / config["model_name"]).rglob("*.ckpt")
ckpt_path_list = sorted(
ckpt_path_list, key=lambda x: int(x.stem.split("step=")[-1]), reverse=True
)
ckpt_path = str(ckpt_path_list[0]) if len(ckpt_path_list) > 0 else None
# start training
trainer.fit(
model=lightning_alignment_model,
train_dataloaders=train_dataloader,
val_dataloaders=valid_dataloader,
ckpt_path=ckpt_path,
)
# Discard the optimizer and save
trainer.save_checkpoint(
str(pathlib.Path("ckpt") / config["model_name"]) + ".ckpt", weights_only=True
)
if __name__ == "__main__":
main()