forked from AayushKrChaudhary/RITnet
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
193 lines (156 loc) · 7.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Sep 2 11:22:32 2019
@author: aayush
"""
from models import model_dict
from torch.utils.data import DataLoader
from dataset import IrisDataset
import torch
from utils import mIoU, CrossEntropyLoss2d,total_metric,get_nparams,Logger,GeneralizedDiceLoss,SurfaceLoss
import numpy as np
from dataset import transform
from opt import parse_args
import os
from utils import get_predictions
from tqdm import tqdm
import matplotlib.pyplot as plt
#%%
def lossandaccuracy(loader,model,factor):
epoch_loss = []
ious = []
model.eval()
with torch.no_grad():
for i, batchdata in enumerate(loader):
# print (len(batchdata))
img,labels,index,spatialWeights,maxDist=batchdata
data = img.to(device)
target = labels.to(device).long()
output = model(data)
## loss from cross entropy is weighted sum of pixel wise loss and Canny edge loss *20
CE_loss = criterion(output,target)
loss = CE_loss*(torch.from_numpy(np.ones(spatialWeights.shape)).to(torch.float32).to(device)+(spatialWeights).to(torch.float32).to(device))
loss=torch.mean(loss).to(torch.float32).to(device)
loss_dice = criterion_DICE(output,target)
loss_sl = torch.mean(criterion_SL(output.to(device),(maxDist).to(device)))
##total loss is the weighted sum of suface loss and dice loss plus the boundary weighted cross entropy loss
loss = (1-factor)*loss_sl+factor*(loss_dice)+loss
epoch_loss.append(loss.item())
predict = get_predictions(output)
iou = mIoU(predict,labels)
ious.append(iou)
return np.average(epoch_loss),np.average(ious)
#%%
if __name__ == '__main__':
args = parse_args()
kwargs = vars(args)
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if args.useGPU:
device=torch.device("cuda")
torch.cuda.manual_seed(12)
else:
device=torch.device("cpu")
torch.manual_seed(12)
torch.backends.cudnn.deterministic=False
if args.model not in model_dict:
print ("Model not found !!!")
print ("valid models are:",list(model_dict.keys()))
exit(1)
LOGDIR = 'logs/{}'.format(args.expname)
os.makedirs(LOGDIR,exist_ok=True)
os.makedirs(LOGDIR+'/models',exist_ok=True)
logger = Logger(os.path.join(LOGDIR,'logs.log'))
model = model_dict[args.model]
model = model.to(device)
torch.save(model.state_dict(), '{}/models/dense_net{}.pkl'.format(LOGDIR,'_0'))
model.train()
nparams = get_nparams(model)
try:
from torchsummary import summary
summary(model,input_size=(1,640,400))
print("Max params:", 1024*1024/4.0)
logger.write_summary(str(model.parameters))
except:
print ("Torch summary not found !!!")
optimizer = torch.optim.Adam(model.parameters(), lr = args.lr)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min',patience=5)
criterion = CrossEntropyLoss2d()
criterion_DICE = GeneralizedDiceLoss(softmax=True, reduction=True)
criterion_SL = SurfaceLoss()
Path2file = args.dataset
train = IrisDataset(filepath = Path2file,split='train',
transform = transform, **kwargs)
valid = IrisDataset(filepath = Path2file , split='validation',
transform = transform, **kwargs)
trainloader = DataLoader(train, batch_size = args.bs,
shuffle=True, num_workers = args.workers)
validloader = DataLoader(valid, batch_size = args.bs,
shuffle= False, num_workers = args.workers)
test = IrisDataset(filepath = Path2file , split='test',
transform = transform, **kwargs)
testloader = DataLoader(test, batch_size = args.bs,
shuffle=False, num_workers = args.workers)
# alpha = 1 - np.arange(1,args.epochs)/args.epoch
##The weighing function for the dice loss and surface loss
alpha=np.zeros(((args.epochs)))
alpha[0:np.min([125,args.epochs])]=1 - np.arange(1,np.min([125,args.epochs])+1)/np.min([125,args.epochs])
if args.epochs>125:
alpha[125:]=1
ious = []
for epoch in range(args.epochs):
for i, batchdata in enumerate(trainloader):
# print (len(batchdata))
img,labels,index,spatialWeights,maxDist= batchdata
data = img.to(device)
target = labels.to(device).long()
optimizer.zero_grad()
output = model(data)
## loss from cross entropy is weighted sum of pixel wise loss and Canny edge loss *20
CE_loss = criterion(output,target)
loss = CE_loss*(torch.from_numpy(np.ones(spatialWeights.shape)).to(torch.float32).to(device)+(spatialWeights).to(torch.float32).to(device))
loss=torch.mean(loss).to(torch.float32).to(device)
loss_dice = criterion_DICE(output,target)
loss_sl = torch.mean(criterion_SL(output.to(device),(maxDist).to(device)))
##total loss is the weighted sum of suface loss and dice loss plus the boundary weighted cross entropy loss
loss = (1-alpha[epoch])*loss_sl+alpha[epoch]*(loss_dice)+loss
#
predict = get_predictions(output)
iou = mIoU(predict,labels)
ious.append(iou)
if i%10 == 0:
logger.write('Epoch:{} [{}/{}], Loss: {:.3f}'.format(epoch,i,len(trainloader),loss.item()))
loss.backward()
optimizer.step()
logger.write('Epoch:{}, Train mIoU: {}'.format(epoch,np.average(ious)))
lossvalid , miou = lossandaccuracy(validloader,model,alpha[epoch])
totalperf = total_metric(nparams,miou)
f = 'Epoch:{}, Valid Loss: {:.3f} mIoU: {} Complexity: {} total: {}'
logger.write(f.format(epoch,lossvalid, miou,nparams,totalperf))
scheduler.step(lossvalid)
##save the model every epoch
if epoch %1 == 0:
torch.save(model.state_dict(), '{}/models/dense_net{}.pkl'.format(LOGDIR,epoch))
##visualize the ouput every 5 epoch
if epoch %5 ==0:
os.makedirs('test/epoch/labels/',exist_ok=True)
os.makedirs('test/epoch/output/',exist_ok=True)
os.makedirs('test/epoch/mask/',exist_ok=True)
with torch.no_grad():
for i, batchdata in tqdm(enumerate(testloader),total=len(testloader)):
img,labels,index,x,maxDist= batchdata
data = img.to(device)
output = model(data)
predict = get_predictions(output)
for j in range (len(index)):
np.save('test/epoch/labels/{}.npy'.format(index[j]),predict[j].cpu().numpy())
try:
plt.imsave('test/epoch/output/{}.jpg'.format(index[j]),255*labels[j].cpu().numpy())
except:
pass
pred_img = predict[j].cpu().numpy()/3.0
inp = img[j].squeeze() * 0.5 + 0.5
img_orig = np.clip(inp,0,1)
img_orig = np.array(img_orig)
combine = np.hstack([img_orig,pred_img])
plt.imsave('test/epoch/mask/{}.jpg'.format(index[j]),combine)