-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathflatbush.h
297 lines (246 loc) · 8.01 KB
/
flatbush.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
#pragma once
#include <vector>
#include <algorithm>
#include <utility>
#include <limits>
#include <stdint.h>
#include <float.h>
namespace flatbush {
inline uint32_t HilbertXYToIndex(uint32_t n, uint32_t x, uint32_t y);
template <typename TCoord>
class FlatBush {
public:
struct Box {
size_t Index;
TCoord MinX;
TCoord MinY;
TCoord MaxX;
TCoord MaxY;
bool PositiveUnion(const Box& b) const { return b.MaxX >= MinX && b.MinX <= MaxX && b.MaxY >= MinY && b.MinY <= MaxY; }
};
size_t NodeSize = 16;
FlatBush();
void Reserve(size_t size); // Calling this before calling add(),add()...finish() is an optimization
size_t Add(TCoord minX, TCoord minY, TCoord maxX, TCoord maxY); // Add an item, and return it's index
void Finish(); // Build the index
void Search(TCoord minX, TCoord minY, TCoord maxX, TCoord maxY, std::vector<size_t>& results) const; // Search for items
std::vector<size_t> Search(TCoord minX, TCoord minY, TCoord maxX, TCoord maxY) const; // Search for items
size_t Size() const { return NumItems; }
private:
std::vector<Box> Boxes;
Box Bounds;
std::vector<uint32_t> HilbertValues;
std::vector<size_t> LevelBounds;
size_t NumItems = 0;
static Box InvertedBox();
static void Sort(uint32_t* hilbertValues, Box* boxes, size_t left, size_t right);
};
template <typename TCoord>
FlatBush<TCoord>::FlatBush() {
Bounds = InvertedBox();
}
template <typename TCoord>
void FlatBush<TCoord>::Reserve(size_t size) {
size_t n = size;
size_t numNodes = n;
do {
n = (n + NodeSize - 1) / NodeSize;
numNodes += n;
} while (n > 1);
Boxes.reserve(numNodes);
}
template <typename TCoord>
size_t FlatBush<TCoord>::Add(TCoord minX, TCoord minY, TCoord maxX, TCoord maxY) {
size_t index = Boxes.size();
Boxes.push_back({index, minX, minY, maxX, maxY});
Bounds.MinX = std::min(Bounds.MinX, minX);
Bounds.MinY = std::min(Bounds.MinY, minY);
Bounds.MaxX = std::max(Bounds.MaxX, maxX);
Bounds.MaxY = std::max(Bounds.MaxY, maxY);
return index;
}
template <typename TCoord>
void FlatBush<TCoord>::Finish() {
if (NodeSize < 2)
NodeSize = 2;
NumItems = Boxes.size();
// calculate the total number of nodes in the R-tree to allocate space for
// and the index of each tree level (used in search later)
size_t n = NumItems;
size_t numNodes = n;
LevelBounds.push_back(n);
do {
n = (n + NodeSize - 1) / NodeSize;
numNodes += n;
LevelBounds.push_back(numNodes);
} while (n > 1);
TCoord width = Bounds.MaxX - Bounds.MinX;
TCoord height = Bounds.MaxY - Bounds.MinY;
HilbertValues.resize(Boxes.size());
TCoord hilbertMax = TCoord((1 << 16) - 1);
// map item centers into Hilbert coordinate space and calculate Hilbert values
for (size_t i = 0; i < Boxes.size(); i++) {
const auto& b = Boxes[i];
uint32_t x = uint32_t(hilbertMax * ((b.MinX + b.MaxX) / 2 - Bounds.MinX) / width);
uint32_t y = uint32_t(hilbertMax * ((b.MinY + b.MaxY) / 2 - Bounds.MinY) / height);
HilbertValues[i] = HilbertXYToIndex(16, x, y);
}
// sort items by their Hilbert value (for packing later)
if (Boxes.size() != 0)
Sort(&HilbertValues[0], &Boxes[0], 0, Boxes.size() - 1);
// generate nodes at each tree level, bottom-up
for (size_t i = 0, pos = 0; i < LevelBounds.size() - 1; i++) {
size_t end = LevelBounds[i];
// generate a parent node for each block of consecutive <nodeSize> nodes
while (pos < end) {
Box nodeBox = InvertedBox();
nodeBox.Index = pos;
// calculate bbox for the new node
for (size_t j = 0; j < NodeSize && pos < end; j++) {
const auto& box = Boxes[pos++];
nodeBox.MinX = std::min(nodeBox.MinX, box.MinX);
nodeBox.MinY = std::min(nodeBox.MinY, box.MinY);
nodeBox.MaxX = std::max(nodeBox.MaxX, box.MaxX);
nodeBox.MaxY = std::max(nodeBox.MaxY, box.MaxY);
}
// add the new node to the tree data
Boxes.push_back(nodeBox);
}
}
}
template <typename TCoord>
std::vector<size_t> FlatBush<TCoord>::Search(TCoord minX, TCoord minY, TCoord maxX, TCoord maxY) const {
std::vector<size_t> results;
Search(minX, minY, maxX, maxY, results);
return results;
}
template <typename TCoord>
void FlatBush<TCoord>::Search(TCoord minX, TCoord minY, TCoord maxX, TCoord maxY, std::vector<size_t>& results) const {
if (LevelBounds.size() == 0) {
// Must call Finish()
return;
}
std::vector<size_t> queue;
queue.push_back(Boxes.size() - 1); // nodeIndex
queue.push_back(LevelBounds.size() - 1); // level
while (queue.size() != 0) {
size_t nodeIndex = queue[queue.size() - 2];
size_t level = queue[queue.size() - 1];
queue.pop_back();
queue.pop_back();
// find the end index of the node
size_t end = std::min(nodeIndex + NodeSize, LevelBounds[level]);
// search through child nodes
for (size_t pos = nodeIndex; pos < end; pos++) {
// check if node bbox intersects with query bbox
if (maxX < Boxes[pos].MinX ||
maxY < Boxes[pos].MinY ||
minX > Boxes[pos].MaxX ||
minY > Boxes[pos].MaxY) {
continue;
}
if (nodeIndex < NumItems) {
// leaf item
results.push_back(Boxes[pos].Index);
} else {
// node; add it to the search queue
queue.push_back(Boxes[pos].Index);
queue.push_back(level - 1);
}
}
}
}
template <typename TCoord>
typename FlatBush<TCoord>::Box FlatBush<TCoord>::InvertedBox() {
FlatBush<TCoord>::Box b;
b.Index = -1;
b.MinX = std::numeric_limits<TCoord>::max();
b.MinY = std::numeric_limits<TCoord>::max();
b.MaxX = std::numeric_limits<TCoord>::lowest();
b.MaxY = std::numeric_limits<TCoord>::lowest();
return b;
}
// custom quicksort that sorts bbox data alongside the hilbert values
template <typename TCoord>
void FlatBush<TCoord>::Sort(uint32_t* values, Box* boxes, size_t left, size_t right) {
if (left >= right)
return;
uint32_t pivot = values[(left + right) >> 1];
size_t i = left - 1;
size_t j = right + 1;
while (true) {
do
i++;
while (values[i] < pivot);
do
j--;
while (values[j] > pivot);
if (i >= j)
break;
std::swap(values[i], values[j]);
std::swap(boxes[i], boxes[j]);
}
Sort(values, boxes, left, j);
Sort(values, boxes, j + 1, right);
}
// From https://github.com/rawrunprotected/hilbert_curves (public domain)
inline uint32_t Interleave(uint32_t x) {
x = (x | (x << 8)) & 0x00FF00FF;
x = (x | (x << 4)) & 0x0F0F0F0F;
x = (x | (x << 2)) & 0x33333333;
x = (x | (x << 1)) & 0x55555555;
return x;
}
inline uint32_t HilbertXYToIndex(uint32_t n, uint32_t x, uint32_t y) {
x = x << (16 - n);
y = y << (16 - n);
uint32_t A, B, C, D;
// Initial prefix scan round, prime with x and y
{
uint32_t a = x ^ y;
uint32_t b = 0xFFFF ^ a;
uint32_t c = 0xFFFF ^ (x | y);
uint32_t d = x & (y ^ 0xFFFF);
A = a | (b >> 1);
B = (a >> 1) ^ a;
C = ((c >> 1) ^ (b & (d >> 1))) ^ c;
D = ((a & (c >> 1)) ^ (d >> 1)) ^ d;
}
{
uint32_t a = A;
uint32_t b = B;
uint32_t c = C;
uint32_t d = D;
A = ((a & (a >> 2)) ^ (b & (b >> 2)));
B = ((a & (b >> 2)) ^ (b & ((a ^ b) >> 2)));
C ^= ((a & (c >> 2)) ^ (b & (d >> 2)));
D ^= ((b & (c >> 2)) ^ ((a ^ b) & (d >> 2)));
}
{
uint32_t a = A;
uint32_t b = B;
uint32_t c = C;
uint32_t d = D;
A = ((a & (a >> 4)) ^ (b & (b >> 4)));
B = ((a & (b >> 4)) ^ (b & ((a ^ b) >> 4)));
C ^= ((a & (c >> 4)) ^ (b & (d >> 4)));
D ^= ((b & (c >> 4)) ^ ((a ^ b) & (d >> 4)));
}
// Final round and projection
{
uint32_t a = A;
uint32_t b = B;
uint32_t c = C;
uint32_t d = D;
C ^= ((a & (c >> 8)) ^ (b & (d >> 8)));
D ^= ((b & (c >> 8)) ^ ((a ^ b) & (d >> 8)));
}
// Undo transformation prefix scan
uint32_t a = C ^ (C >> 1);
uint32_t b = D ^ (D >> 1);
// Recover index bits
uint32_t i0 = x ^ y;
uint32_t i1 = b | (0xFFFF ^ (i0 | a));
return ((Interleave(i1) << 1) | Interleave(i0)) >> (32 - 2 * n);
}
} // namespace flatbush