-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathtrain.py
205 lines (163 loc) · 7.78 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = '0,1'
import torch
torch.backends.cudnn.benchmark = True
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import random
import time
import numpy as np
import utils
from data_RGB import get_training_data, get_validation_data
from DeepRFT_MIMO import DeepRFT as myNet
import losses
from warmup_scheduler import GradualWarmupScheduler
from tqdm import tqdm
from get_parameter_number import get_parameter_number
import kornia
from torch.utils.tensorboard import SummaryWriter
import argparse
######### Set Seeds ###########
random.seed(1234)
np.random.seed(1234)
torch.manual_seed(1234)
torch.cuda.manual_seed_all(1234)
start_epoch = 1
parser = argparse.ArgumentParser(description='Image Deblurring')
parser.add_argument('--train_dir', default='./Datasets/GoPro/train', type=str, help='Directory of train images')
parser.add_argument('--val_dir', default='./Datasets/GoPro/val', type=str, help='Directory of validation images')
parser.add_argument('--model_save_dir', default='./checkpoints', type=str, help='Path to save weights')
parser.add_argument('--pretrain_weights', default='./checkpoints/model_best.pth', type=str, help='Path to pretrain-weights')
parser.add_argument('--mode', default='Deblurring', type=str)
parser.add_argument('--session', default='DeepRFT_gopro', type=str, help='session')
parser.add_argument('--patch_size', default=256, type=int, help='patch size, for paper: [GoPro, HIDE, RealBlur]=256, [DPDD]=512')
parser.add_argument('--num_epochs', default=3000, type=int, help='num_epochs')
parser.add_argument('--batch_size', default=16, type=int, help='batch_size')
parser.add_argument('--val_epochs', default=20, type=int, help='val_epochs')
args = parser.parse_args()
mode = args.mode
session = args.session
patch_size = args.patch_size
model_dir = os.path.join(args.model_save_dir, mode, 'models', session)
utils.mkdir(model_dir)
train_dir = args.train_dir
val_dir = args.val_dir
num_epochs = args.num_epochs
batch_size = args.batch_size
val_epochs = args.val_epochs
start_lr = 2e-4
end_lr = 1e-6
######### Model ###########
model_restoration = myNet()
# print number of model
get_parameter_number(model_restoration)
model_restoration.cuda()
device_ids = [i for i in range(torch.cuda.device_count())]
if torch.cuda.device_count() > 1:
print("\n\nLet's use", torch.cuda.device_count(), "GPUs!\n\n")
optimizer = optim.Adam(model_restoration.parameters(), lr=start_lr, betas=(0.9, 0.999), eps=1e-8)
######### Scheduler ###########
warmup_epochs = 3
scheduler_cosine = optim.lr_scheduler.CosineAnnealingLR(optimizer, num_epochs-warmup_epochs, eta_min=end_lr)
scheduler = GradualWarmupScheduler(optimizer, multiplier=1, total_epoch=warmup_epochs, after_scheduler=scheduler_cosine)
RESUME = False
Pretrain = False
model_pre_dir = ''
######### Pretrain ###########
if Pretrain:
utils.load_checkpoint(model_restoration, model_pre_dir)
print('------------------------------------------------------------------------------')
print("==> Retrain Training with: " + model_pre_dir)
print('------------------------------------------------------------------------------')
######### Resume ###########
if RESUME:
path_chk_rest = utils.get_last_path(model_dir, '_latest.pth')
utils.load_checkpoint(model_restoration,path_chk_rest)
start_epoch = utils.load_start_epoch(path_chk_rest) + 1
utils.load_optim(optimizer, path_chk_rest)
for i in range(1, start_epoch):
scheduler.step()
new_lr = scheduler.get_lr()[0]
print('------------------------------------------------------------------------------')
print("==> Resuming Training with learning rate:", new_lr)
print('------------------------------------------------------------------------------')
if len(device_ids)>1:
model_restoration = nn.DataParallel(model_restoration, device_ids=device_ids)
######### Loss ###########
criterion_char = losses.CharbonnierLoss()
criterion_edge = losses.EdgeLoss()
criterion_fft = losses.fftLoss()
######### DataLoaders ###########
train_dataset = get_training_data(train_dir, {'patch_size':patch_size})
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, num_workers=8, drop_last=False, pin_memory=True)
val_dataset = get_validation_data(val_dir, {'patch_size':patch_size})
val_loader = DataLoader(dataset=val_dataset, batch_size=16, shuffle=False, num_workers=8, drop_last=False, pin_memory=True)
print('===> Start Epoch {} End Epoch {}'.format(start_epoch, num_epochs + 1))
print('===> Loading datasets')
best_psnr = 0
best_epoch = 0
writer = SummaryWriter(model_dir)
iter = 0
for epoch in range(start_epoch, num_epochs + 1):
epoch_start_time = time.time()
epoch_loss = 0
train_id = 1
model_restoration.train()
for i, data in enumerate(tqdm(train_loader), 0):
# zero_grad
for param in model_restoration.parameters():
param.grad = None
target_ = data[0].cuda()
input_ = data[1].cuda()
target = kornia.geometry.transform.build_pyramid(target_, 3)
restored = model_restoration(input_)
loss_fft = criterion_fft(restored[0], target[0]) + criterion_fft(restored[1], target[1]) + criterion_fft(
restored[2], target[2])
loss_char = criterion_char(restored[0], target[0]) + criterion_char(restored[1], target[1]) + criterion_char(restored[2], target[2])
loss_edge = criterion_edge(restored[0], target[0]) + criterion_edge(restored[1], target[1]) + criterion_edge(restored[2], target[2])
loss = loss_char + 0.01 * loss_fft + 0.05 * loss_edge
loss.backward()
optimizer.step()
epoch_loss +=loss.item()
iter += 1
writer.add_scalar('loss/fft_loss', loss_fft, iter)
writer.add_scalar('loss/char_loss', loss_char, iter)
writer.add_scalar('loss/edge_loss', loss_edge, iter)
writer.add_scalar('loss/iter_loss', loss, iter)
writer.add_scalar('loss/epoch_loss', epoch_loss, epoch)
#### Evaluation ####
if epoch % val_epochs == 0:
model_restoration.eval()
psnr_val_rgb = []
for ii, data_val in enumerate((val_loader), 0):
target = data_val[0].cuda()
input_ = data_val[1].cuda()
with torch.no_grad():
restored = model_restoration(input_)
for res,tar in zip(restored[0], target):
psnr_val_rgb.append(utils.torchPSNR(res, tar))
psnr_val_rgb = torch.stack(psnr_val_rgb).mean().item()
writer.add_scalar('val/psnr', psnr_val_rgb, epoch)
if psnr_val_rgb > best_psnr:
best_psnr = psnr_val_rgb
best_epoch = epoch
torch.save({'epoch': epoch,
'state_dict': model_restoration.state_dict(),
'optimizer' : optimizer.state_dict()
}, os.path.join(model_dir,"model_best.pth"))
print("[epoch %d PSNR: %.4f --- best_epoch %d Best_PSNR %.4f]" % (epoch, psnr_val_rgb, best_epoch, best_psnr))
torch.save({'epoch': epoch,
'state_dict': model_restoration.state_dict(),
'optimizer' : optimizer.state_dict()
}, os.path.join(model_dir,f"model_epoch_{epoch}.pth"))
scheduler.step()
print("------------------------------------------------------------------")
print("Epoch: {}\tTime: {:.4f}\tLoss: {:.4f}\tLearningRate {:.6f}".format(epoch, time.time()-epoch_start_time, epoch_loss, scheduler.get_lr()[0]))
print("------------------------------------------------------------------")
torch.save({'epoch': epoch,
'state_dict': model_restoration.state_dict(),
'optimizer' : optimizer.state_dict()
}, os.path.join(model_dir,"model_latest.pth"))
writer.close()