-
Notifications
You must be signed in to change notification settings - Fork 1
/
lmeval.py
412 lines (373 loc) · 14.2 KB
/
lmeval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
# Copied from https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/__main__.py
import argparse
import json
import logging
import os
import re
import sys
from pathlib import Path
from typing import Union, Optional
import numpy as np
import torch
from transformers import AutoModelForCausalLM
from lm_eval import evaluator, utils
from lm_eval.api.registry import ALL_TASKS
from lm_eval.tasks import include_path, initialize_tasks
from lm_eval.utils import make_table
try:
import wandb
has_wandb = True
except ModuleNotFoundError:
has_wandb = False
from src.model_utils import drop_layers_from_config
def _handle_non_serializable(o):
if isinstance(o, np.int64) or isinstance(o, np.int32):
return int(o)
elif isinstance(o, set):
return list(o)
else:
return str(o)
def parse_eval_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("--model", "-m", default="hf", help="Name of model e.g. `hf`")
parser.add_argument(
"--tasks",
"-t",
default=None,
metavar="task1,task2",
help="To get full list of tasks, use the command lm-eval --tasks list",
)
parser.add_argument(
"--model_args",
"-a",
default="",
help="Comma separated string arguments for model, e.g. `pretrained=EleutherAI/pythia-160m,dtype=float32`",
)
parser.add_argument(
"--num_fewshot",
"-f",
type=int,
default=None,
metavar="N",
help="Number of examples in few-shot context",
)
parser.add_argument(
"--batch_size",
"-b",
type=str,
default=1,
metavar="auto|auto:N|N",
help="Acceptable values are 'auto', 'auto:N' or N, where N is an integer. Default 1.",
)
parser.add_argument(
"--max_batch_size",
type=int,
default=None,
metavar="N",
help="Maximal batch size to try with --batch_size auto.",
)
parser.add_argument(
"--device",
type=str,
default=None,
help="Device to use (e.g. cuda, cuda:0, cpu).",
)
parser.add_argument(
"--output_path",
"-o",
default=None,
type=str,
metavar="DIR|DIR/file.json",
help="The path to the output file where the result metrics will be saved. If the path is a directory and log_samples is true, the results will be saved in the directory. Else the parent directory will be used.",
)
parser.add_argument(
"--limit",
"-L",
type=float,
default=None,
metavar="N|0<N<1",
help="Limit the number of examples per task. " "If <1, limit is a percentage of the total number of examples.",
)
parser.add_argument(
"--use_cache",
"-c",
type=str,
default=None,
metavar="DIR",
help="A path to a sqlite db file for caching model responses. `None` if not caching.",
)
parser.add_argument("--decontamination_ngrams_path", default=None) # TODO: not used
parser.add_argument(
"--check_integrity",
action="store_true",
help="Whether to run the relevant part of the test suite for the tasks.",
)
parser.add_argument(
"--write_out",
"-w",
action="store_true",
default=False,
help="Prints the prompt for the first few documents.",
)
parser.add_argument(
"--log_samples",
"-s",
action="store_true",
default=False,
help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis. Use with --output_path.",
)
parser.add_argument(
"--show_config",
action="store_true",
default=False,
help="If True, shows the the full config of all tasks at the end of the evaluation.",
)
parser.add_argument(
"--include_path",
type=str,
default=None,
metavar="DIR",
help="Additional path to include if there are external tasks to include.",
)
parser.add_argument(
"--gen_kwargs",
default=None,
help=("String arguments for model generation on greedy_until tasks," " e.g. `temperature=0,top_k=0,top_p=0`."),
)
parser.add_argument(
"--verbosity",
"-v",
type=str.upper,
default="INFO",
metavar="CRITICAL|ERROR|WARNING|INFO|DEBUG",
help="Controls the reported logging error level. Set to DEBUG when testing + adding new task configurations for comprehensive log output.",
)
# Loading params
parser.add_argument("--drop_layer_config", type=str, default=None, help="Path to layer dropping configuration.")
# Sparsification params
parser.add_argument(
"--sparse_weights_path",
type=str,
default=None,
help="Path to sparse weights",
)
parser.add_argument(
"--sparse_config_path",
type=str,
default=None,
help="Path to sparsification config",
)
parser.add_argument(
"--sparse_default_level",
type=int,
default=0,
help="Default sparsity level",
)
# Quantization params
parser.add_argument(
"--quant_weights_path",
type=str,
default=None,
help="Path to quantized weights",
)
parser.add_argument(
"--quant_config_path",
type=str,
default=None,
help="Path to quantization config",
)
parser.add_argument(
"--quant_default_level",
type=int,
default=0,
help="Default quantization level",
)
# Logging params
parser.add_argument("--log_wandb", default=False, action="store_true", help="Whether to log to W&B")
return parser.parse_args()
# Compressed model loader
def load_compressed_weights(
model: AutoModelForCausalLM,
compressed_weights_path: Union[str, os.PathLike],
compressed_config_path: Optional[str] = None,
default_level: int = 0,
):
# Load weights from configuration if provided
if compressed_config_path:
with open(os.path.join(compressed_config_path), "r") as f:
for line in f:
layer_name, level = line.split(":")
layer = model.get_submodule(layer_name.strip(" "))
orig_dtype = layer.weight.dtype
layer.weight.data = torch.load(
os.path.join(compressed_weights_path, layer_name, f"{int(level)}.pth"),
map_location=layer.weight.device,
).to(orig_dtype)
# Otherwise load uniform configuration
else:
for layer_name in sorted(os.listdir(compressed_weights_path)):
if not os.path.isdir(os.path.join(compressed_weights_path, layer_name)):
continue
layer = model.get_submodule(layer_name.strip(" "))
orig_dtype = layer.weight.dtype
layer.weight.data = torch.load(
os.path.join(compressed_weights_path, layer_name, f"{default_level}.pth"),
map_location=layer.weight.device,
).to(orig_dtype)
return model
def cli_evaluate(args: Union[argparse.Namespace, None] = None) -> None:
if not args:
# we allow for args to be passed externally, else we parse them ourselves
args = parse_eval_args()
assert (
sum(
[
args.drop_layer_config is not None,
args.sparse_weights_path is not None,
args.quant_weights_path is not None,
]
)
<= 1
), "At most one of the compression options may be specified."
# Backup original from_pretrained
from_pretrained_orig = AutoModelForCausalLM.from_pretrained
from_pretrained_overriden = from_pretrained_orig
# Override from_pretrained
if args.drop_layer_config:
drop_layer_config = args.drop_layer_config
def from_pretrained_overriden(*args, **kwargs):
model = from_pretrained_orig(*args, **kwargs)
# Drop layers given a config
drop_layers_from_config(model, drop_layer_config)
return model
elif args.sparse_weights_path:
sparse_weights_path = args.sparse_weights_path
sparse_config_path = args.sparse_config_path
default_level = args.sparse_default_level
# Define new init
def from_pretrained_overriden(*args, **kwargs):
model = from_pretrained_orig(*args, **kwargs)
model = load_compressed_weights(model, sparse_weights_path, sparse_config_path, default_level)
return model
elif args.quant_weights_path:
quant_weights_path = args.quant_weights_path
quant_config_path = args.quant_config_path
default_level = args.quant_default_level
# Define new init
def from_pretrained_overriden(*args, **kwargs):
model = from_pretrained_orig(*args, **kwargs)
model = load_compressed_weights(model, quant_weights_path, quant_config_path, default_level)
return model
# Override init
AutoModelForCausalLM.from_pretrained = staticmethod(from_pretrained_overriden)
eval_logger = utils.eval_logger
eval_logger.setLevel(getattr(logging, f"{args.verbosity}"))
eval_logger.info(f"Verbosity set to {args.verbosity}")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
initialize_tasks(args.verbosity)
if args.log_wandb:
assert has_wandb, "`wandb` not installed, try pip install `wandb`"
wandb.init(config=args)
if args.limit:
eval_logger.warning(
" --limit SHOULD ONLY BE USED FOR TESTING." "REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
)
if args.include_path is not None:
eval_logger.info(f"Including path: {args.include_path}")
include_path(args.include_path)
if args.tasks is None:
task_names = ALL_TASKS
elif args.tasks == "list":
eval_logger.info("Available Tasks:\n - {}".format("\n - ".join(sorted(ALL_TASKS))))
sys.exit()
else:
if os.path.isdir(args.tasks):
import glob
task_names = []
yaml_path = os.path.join(args.tasks, "*.yaml")
for yaml_file in glob.glob(yaml_path):
config = utils.load_yaml_config(yaml_file)
task_names.append(config)
else:
tasks_list = args.tasks.split(",")
task_names = utils.pattern_match(tasks_list, ALL_TASKS)
for task in [task for task in tasks_list if task not in task_names]:
if os.path.isfile(task):
config = utils.load_yaml_config(task)
task_names.append(config)
task_missing = [
task for task in tasks_list if task not in task_names and "*" not in task
] # we don't want errors if a wildcard ("*") task name was used
if task_missing:
missing = ", ".join(task_missing)
eval_logger.error(
f"Tasks were not found: {missing}\n"
f"{utils.SPACING}Try `lm-eval --tasks list` for list of available tasks",
)
raise ValueError(
f"Tasks not found: {missing}. Try `lm-eval --tasks list` for list of available tasks, or '--verbosity DEBUG' to troubleshoot task registration issues."
)
if args.output_path:
path = Path(args.output_path)
# check if file or 'dir/results.json' exists
if path.is_file() or Path(args.output_path).joinpath("results.json").is_file():
eval_logger.warning(f"File already exists at {path}. Results will be overwritten.")
output_path_file = path.joinpath("results.json")
assert not path.is_file(), "File already exists"
# if path json then get parent dir
elif path.suffix in (".json", ".jsonl"):
output_path_file = path
path.parent.mkdir(parents=True, exist_ok=True)
path = path.parent
else:
path.mkdir(parents=True, exist_ok=True)
output_path_file = path.joinpath("results.json")
elif args.log_samples and not args.output_path:
assert args.output_path, "Specify --output_path"
eval_logger.info(f"Selected Tasks: {task_names}")
results = evaluator.simple_evaluate(
model=args.model,
model_args=args.model_args,
tasks=task_names,
num_fewshot=args.num_fewshot,
batch_size=args.batch_size,
max_batch_size=args.max_batch_size,
device=args.device,
use_cache=args.use_cache,
limit=args.limit,
decontamination_ngrams_path=args.decontamination_ngrams_path,
check_integrity=args.check_integrity,
write_out=args.write_out,
log_samples=args.log_samples,
gen_kwargs=args.gen_kwargs,
)
if results is not None:
if args.log_samples:
samples = results.pop("samples")
dumped = json.dumps(results, indent=2, default=_handle_non_serializable, ensure_ascii=False)
if args.show_config:
print(dumped)
batch_sizes = ",".join(map(str, results["config"]["batch_sizes"]))
if args.output_path:
output_path_file.open("w").write(dumped)
if args.log_samples:
for task_name, config in results["configs"].items():
output_name = "{}_{}".format(re.sub("/|=", "__", args.model_args), task_name)
filename = path.joinpath(f"{output_name}.jsonl")
samples_dumped = json.dumps(
samples[task_name],
indent=2,
default=_handle_non_serializable,
ensure_ascii=False,
)
filename.open("w").write(samples_dumped)
print(
f"{args.model} ({args.model_args}), gen_kwargs: ({args.gen_kwargs}), limit: {args.limit}, num_fewshot: {args.num_fewshot}, "
f"batch_size: {args.batch_size}{f' ({batch_sizes})' if batch_sizes else ''}"
)
print(make_table(results))
if "groups" in results:
print(make_table(results, "groups"))
if args.log_wandb:
wandb.log(results)
cli_evaluate()