-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlive_cfk.py
234 lines (158 loc) · 8.22 KB
/
live_cfk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import tensorflow as tf
import numpy as np
import os
from tqdm import tqdm
import random
# Disable tensorflow logs
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
MIN_PARAGRAPH_LEN = 5
def load_data(_dir):
ret = []
for each in os.listdir(_dir):
full_path = os.path.join(_dir, each)
if each.endswith("txt"):
with open(full_path, "rb") as f:
aux = f.read().decode("utf-8").split('\n\n')
for paragraph in aux:
paragraph = paragraph.strip('\n')
paragraph += '\n'
if len(paragraph) < MIN_PARAGRAPH_LEN:
continue
ret.append(paragraph)
return ret
def preprocess(paragraphs):
chars = set()
for each in paragraphs:
chars.update(set(each))
char_to_ix = { ch:i for i,ch in enumerate(chars) }
ix_to_char = { i:ch for i,ch in enumerate(chars) }
aux = len(char_to_ix)
char_to_ix["<START>"] = aux
ix_to_char[aux] = "<START>"
vocab_size = len(char_to_ix)
max_p = max([len(i) for i in paragraphs]) + 1 # Plus one because of the START token
ret = np.zeros(shape=(len(paragraphs), max_p, vocab_size), dtype=np.uint8)
lens = np.zeros(shape=len(paragraphs), dtype=np.uint8)
for idx, each in tqdm(enumerate(paragraphs)):
lens[idx] = len(each) + 1
for i in range(max_p - len(each) - 1):
each += '\n'
aux = np.zeros(shape=(max_p, vocab_size))
aux[0][char_to_ix["<START>"]] = 1
for i, c in enumerate(each):
aux[i+1][char_to_ix[c]] = 1
ret[idx] = aux
return ret, lens, char_to_ix, ix_to_char
def get_model(times, input_size, n_hidden):
tf.reset_default_graph()
init = tf.contrib.layers.xavier_initializer()
x = tf.placeholder(tf.float32, shape=(None, times, input_size), name="x")
y = tf.placeholder(tf.float32, shape=(None, times, input_size))
seq_len = tf.placeholder(tf.int64, shape=(None), name="seq_len")
x_2 = tf.unstack(x, axis=1)
init_state_c_1 = tf.placeholder(tf.float32, shape=[None, n_hidden], name="init_state_c_1")
init_state_h_1 = tf.placeholder(tf.float32, shape=[None, n_hidden], name="init_state_h_1")
init_state_c_2 = tf.placeholder(tf.float32, shape=[None, n_hidden], name="init_state_c_2")
init_state_h_2 = tf.placeholder(tf.float32, shape=[None, n_hidden], name="init_state_h_2")
cell_1 = tf.contrib.rnn.BasicLSTMCell(n_hidden)
cell_2 = tf.contrib.rnn.BasicLSTMCell(n_hidden)
cell = tf.contrib.rnn.MultiRNNCell([cell_1, cell_2])
t_1 = tf.contrib.rnn.LSTMStateTuple(init_state_c_1, init_state_h_1)
t_2 = tf.contrib.rnn.LSTMStateTuple(init_state_c_2, init_state_h_2)
outputs, states = tf.contrib.rnn.static_rnn(cell, x_2, dtype=tf.float32, sequence_length=seq_len, initial_state=(t_1, t_2))
states_0 = tf.nn.rnn_cell.LSTMStateTuple(tf.identity(states[0][0], name="states_0_c"), tf.identity(states[0][1], name="states_0_h"))
states_1 = tf.nn.rnn_cell.LSTMStateTuple(tf.identity(states[1][0], name="states_1_c"), tf.identity(states[1][1], name="states_1_h"))
states = (states_0, states_1)
outputs_2 = tf.stack(outputs, axis=1)
out = tf.layers.dense(outputs_2, units=input_size, kernel_initializer=init, name="out")
out_softmax = tf.nn.softmax(out, name="out_softmax")
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=out, labels=y))
upd = tf.train.AdamOptimizer().minimize(loss)
return init, x, y, seq_len, init_state_c_1, init_state_h_1, init_state_c_2, init_state_h_2, outputs, states, out, out_softmax, loss, upd
def test(sess, model, times, input_size, n_hidden, max_=1000, T=None):
init, x, y, seq_len, init_state_c_1, init_state_h_1, init_state_c_2, init_state_h_2, outputs, states, out, out_softmax, loss, upd = model
pred = "<START>"
c_1 = np.zeros((1, n_hidden))
h_1 = np.zeros((1, n_hidden))
c_2 = np.zeros((1, n_hidden))
h_2 = np.zeros((1, n_hidden))
ret = []
while True:
in_ = np.zeros(shape=(1, times, input_size), dtype=np.uint)
in_[0, 0, char_to_ix[pred]] = 1
if T is None:
net_out, net_states = sess.run([out_softmax, states], feed_dict={x: in_, init_state_c_1: c_1, init_state_h_1: h_1, init_state_c_2: c_2, init_state_h_2: h_2, seq_len: np.ones(shape=(1,))})
c_1, h_1 = net_states[0].c, net_states[0].h
c_2, h_2 = net_states[1].c, net_states[1].h
p = np.squeeze(net_out)[0]
else:
net_out, net_states = sess.run([out, states], feed_dict={x: in_, init_state_c_1: c_1, init_state_h_1: h_1, init_state_c_2: c_2, init_state_h_2: h_2, seq_len: np.ones(shape=(1,))})
c_1, h_1 = net_states[0].c, net_states[0].h
c_2, h_2 = net_states[1].c, net_states[1].h
p = np.squeeze(net_out)[0]
p = np.exp(p/T) / np.sum(np.exp(p/T))
char_out = ix_to_char[int(np.random.choice(np.arange(input_size), p=p))]
ret.append(char_out)
pred = char_out
if char_out == '\n' or len(ret) > max_:
break
return ret
def infinite_train(model, times, n_hidden, input_size, batch_size, print_each):
init, x, y, seq_len, init_state_c_1, init_state_h_1, init_state_c_2, init_state_h_2, outputs, states, out, out_softmax, loss, upd = model
N, M, V = data.shape
sess = tf.Session()
sess.run(tf.global_variables_initializer())
zeros = np.zeros(shape=(batch_size))
times_minus_one = (times - 1) * np.ones(shape=(batch_size))
counter = 0
e = 0
while True:
idxs = np.random.choice(N, batch_size, replace=False)
batch = data[idxs]
batch_lens = lens[idxs].astype(np.int32)
ts = (M-1) // times # + 1
c_1 = np.zeros((batch_size, n_hidden))
h_1 = np.zeros((batch_size, n_hidden))
c_2 = np.zeros((batch_size, n_hidden))
h_2 = np.zeros((batch_size, n_hidden))
if e % print_each == 0:
print("Epoch # {}:".format(e))
print("".join(test(sess, model, times, input_size, n_hidden, max_=500)))
print()
for t in range(ts):
batch_x = batch[:, t*times:times*(t+1), :]
batch_y = batch[:, t*times+1:times*(t+1)+1, :]
batch_lens_aux = batch_lens - (times * t)
batch_lens_aux = np.maximum(zeros, batch_lens_aux)
batch_lens_aux = np.minimum(times_minus_one, batch_lens_aux)
batch_lens_aux = batch_lens_aux.astype(np.uint8)
non_zero_idxs = batch_lens_aux > 0
batch_lens_aux = batch_lens_aux[non_zero_idxs]
batch_x = batch_x[non_zero_idxs, :, :]
batch_y = batch_y[non_zero_idxs, :, :]
c_l_1 = c_1[non_zero_idxs]
h_l_1 = h_1[non_zero_idxs]
c_l_2 = c_2[non_zero_idxs]
h_l_2 = h_2[non_zero_idxs]
if np.all(batch_lens_aux == 0):
break
states_, _ = sess.run([states, upd], feed_dict={x: batch_x, y: batch_y, init_state_c_1: c_l_1, init_state_h_1: h_l_1, init_state_c_2: c_l_2, init_state_h_2: h_l_2, seq_len: batch_lens_aux})
counter += 1
c_1[non_zero_idxs] = states_[0].c
h_1[non_zero_idxs] = states_[0].h
c_2[non_zero_idxs] = states_[1].c
h_2[non_zero_idxs] = states_[1].h
e += 1
if __name__ == "__main__":
print("Cargando la data. Esto puede tardar unos segundos...")
ps = load_data("./speeches/")
data, lens, char_to_ix, ix_to_char = preprocess(ps)
BATCH_SIZE = 64
INPUT_SIZE = len(ix_to_char)
TIMES = 32
N_HIDDEN = 512
PRINT_EACH = 10
print("Empezando el entrenamiento. Presione enter para arrancar. En cualquier momento, presion Ctrl+C para terminar el proceso.")
input()
model = get_model(TIMES, INPUT_SIZE, N_HIDDEN)
infinite_train(model, TIMES, N_HIDDEN, INPUT_SIZE, BATCH_SIZE, PRINT_EACH)