-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlive_mnist.py
156 lines (105 loc) · 3.89 KB
/
live_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import numpy as np
import cv2
import tensorflow as tf
import os
import sys
import matplotlib.pyplot as plt
# Disable tensorflow logs
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
MNIST_MODEL = "./trained_models/mnist/"
H, W = 28, 28
EPSILON = 0.25
MIN_AREA = 750
def load_trained_model():
sess=tf.Session()
#First let's load meta graph and restore weights
saver = tf.train.import_meta_graph(os.path.join(MNIST_MODEL, "model.ckpt.meta"))
saver.restore(sess, os.path.join(MNIST_MODEL, "model.ckpt"))
graph = tf.get_default_graph()
x = graph.get_tensor_by_name("x:0")
out = graph.get_tensor_by_name("out/BiasAdd:0")
return sess, x, out
def find_digits(img, reader):
img_copy = img.copy()
img_h, img_w, _ = img_copy.shape
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (15, 15), 0)
thresh = cv2.adaptiveThreshold(blur, 255, 1, 1, 15, 2)
contours = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[1]
digit_roi = None
for cnt in contours:
area = cv2.contourArea(cnt)
if cv2.contourArea(cnt) > MIN_AREA:
[x,y,w,h] = cv2.boundingRect(cnt)
if w > h*0.3 and w < h:
eps_h = int(EPSILON * h)
eps_w = int(EPSILON * w)
roi = gray[y: y + h, x: x + w]
digit, prob, digit_roi = reader(roi)
if prob > 0.1:
cv2.putText(img_copy, str(digit), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0))
cv2.rectangle(img_copy, (x,y), (x+w,y+h), (0, 0, 255), 2)
return img_copy, digit_roi
def softmax(_in):
return np.exp(_in) / np.sum(np.exp(_in))
def reader(img, sess, x, out):
img = img.copy()
img = 255 - img
img_h, img_w = img.shape
ret, _ = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
img[img <= ret] = 0
img = (img - np.min(img)) / (np.max(img) - np.min(img))
if img_h > img_w:
pad = img_h - img_w
img = np.pad(img, ((0,0), (pad//2, pad//2)), 'constant', constant_values=0)
else:
pad = img_w - img_h
img = np.pad(img, ((pad//2 , pad//2), (0,0)), 'constant', constant_values=0)
img_h, img_w = img.shape
pad_w = int(EPSILON * img_w)
pad_h = int(EPSILON * img_h)
img = np.pad(img, ((pad_h , pad_h), (pad_w,pad_w)), 'constant', constant_values=0)
img = cv2.resize(img, (H, W), cv2.INTER_NEAREST)
img_input = np.reshape(img, (1, H, W, 1))
graph_out, = sess.run([out], feed_dict={x: img_input})
graph_out = np.squeeze(graph_out)
char = np.argmax(graph_out)
prob = max(softmax(graph_out))
return char, prob, img
def run(i, sess, x, out):
cap = cv2.VideoCapture(i)
cv2.namedWindow("Frame", cv2.WND_PROP_FULLSCREEN)
cv2.setWindowProperty("Frame",cv2.WND_PROP_FULLSCREEN,cv2.WINDOW_FULLSCREEN)
while(True):
ret, frame = cap.read()
h, w, c = frame.shape
notated_img, _ = find_digits(frame, lambda img: reader(img, sess, x, out))
cv2.imshow("Frame", notated_img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
def test_camera():
cameras = []
for i in range(3):
cap = cv2.VideoCapture(i)
ret, frame = cap.read()
try:
h, w, c = frame.shape
except AttributeError:
continue
cap.release()
cameras.append(i)
return cameras
if __name__ == "__main__":
cameras = test_camera()
if len(cameras) == 0:
print("Webcam not detected.")
sys.exit(1)
if len(cameras) == 1:
print("Using webcam # {}".format(cameras[0]))
i = cameras[0]
else:
i = int(input("{} cameras detected. Provide an index of the one to use ({} to {}): ".format(len(cameras), 0, len(cameras)-1)))
sess, x, out = load_trained_model()
run(i, sess, x, out)