-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
148 lines (108 loc) · 4.04 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
from skimage import io, transform
import numpy as np
import glob
import config as cfg
from tqdm import tqdm
import matplotlib.pyplot as plt
import tensorflow as tf
#########################################################
# Generic #
#########################################################
def shuffle_dataset(x, y):
N = x.shape[0]
idxs = np.arange(N)
np.random.shuffle(idxs)
return x[idxs], y[idxs]
def get_one_hot_encoding(labels):
N, = labels.shape
M = len(np.unique(labels))
ret = np.zeros((N, M))
ret[np.arange(len(labels)), labels] = 1
return ret
def split(pics, labels, p):
N = pics.shape[0]
N_train = int(p*N)
idxs = np.arange(N)
idxs_train = np.random.choice(idxs, N_train, replace=False)
idxs_val = np.setdiff1d(idxs, idxs_train, assume_unique=True)
return pics[idxs_train], labels[idxs_train], pics[idxs_val], labels[idxs_val]
def get_small_dataset(x, y, p=0.1):
N = x.shape[0]
new_N = int(p * N)
idxs = np.arange(N)
idxs = np.random.choice(idxs, new_N, replace=False)
new_x = x[idxs]
new_y = y[idxs]
return new_x, new_y
#########################################################
# Simpsons Problem Specific #
#########################################################
def load_characters(data_dir, min_imgs=800):
i = 0
map_characters = {}
for char in os.listdir(data_dir):
full_path = os.path.join(data_dir, char)
if os.path.isfile(full_path) or char[0] == '.':
continue
pictures = glob.glob(os.path.join(full_path, "*.jpg"))
if len(pictures) < min_imgs:
continue
map_characters[i] = char
i+=1
return map_characters
def load_pictures(data_dir, map_characters, max_per_classs=None):
pics = []
labels = []
for l, c in map_characters.items():
pictures = glob.glob(os.path.join(data_dir, "{}".format(c), "*"))
for idx in tqdm(range(len(pictures)), desc="Loading {}".format(c)):
if max_per_classs is not None and idx >= max_per_classs:
break
img = io.imread(pictures[idx])
img = transform.resize(img, (cfg.IMG_SIZE, cfg.IMG_SIZE), mode='constant', preserve_range=True).astype(np.uint8)
img = img.astype(np.uint8)
pics.append(img)
labels.append(l)
pics = np.array(pics, dtype=np.uint8)
labels = get_one_hot_encoding(np.array(labels, dtype=np.uint8))
return shuffle_dataset(pics, labels)
def show_random_characters(pics, labels, map_characters):
N, _, _, _ = pics.shape
fig=plt.figure(figsize=(20, 20))
columns = 3
rows = 3
for i in range(1, columns*rows +1):
idx = np.random.choice(range(N))
img = pics[idx]
character = map_characters[np.argmax(labels[idx])]
fig.add_subplot(rows, columns, i)
plt.imshow(img)
plt.title(character)
plt.show()
#########################################################
# MNIST Problem Specific #
#########################################################
def load_mnist():
H, W = 28, 28
mnist = tf.contrib.learn.datasets.load_dataset("mnist")
pics_train = mnist.train.images
pics_train = pics_train.reshape((-1, H, W, 1))
labels_train = get_one_hot_encoding(np.asarray(mnist.train.labels, dtype=np.int32))
pics_test = mnist.test.images
pics_test = pics_test.reshape((-1, H, W, 1))
labels_test = get_one_hot_encoding(np.asarray(mnist.test.labels, dtype=np.int32))
return pics_train, labels_train, pics_test, labels_test
def show_random_mnist(pics, labels):
N, _, _, _ = pics.shape
fig=plt.figure(figsize=(10, 10))
columns = 3
rows = 3
for i in range(1, columns*rows +1):
idx = np.random.choice(range(N))
img = pics[idx]
fig.add_subplot(rows, columns, i)
plt.imshow(np.squeeze(img), cmap='gray')
plt.axis('off')
plt.title(np.argmax(labels[idx]))
plt.show()