-
Notifications
You must be signed in to change notification settings - Fork 0
/
city2eigen.log
1472 lines (1471 loc) · 128 KB
/
city2eigen.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
W0105 11:10:39.824003 9104 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 6.1, Driver API Version: 10.1, Runtime API Version: 10.1
W0105 11:10:39.830708 9104 device_context.cc:465] device: 0, cuDNN Version: 7.6.
total number of training samples: 22600
total number of training steps: 141250
total number of validation samples: 888
number of trainable parameters: 58452008
batch 100 | examples/s: 27.50 | loss: 0.82033 | time elapsed: 0.01h | time left: 16.71h
batch 200 | examples/s: 27.39 | loss: 0.77667 | time elapsed: 0.02h | time left: 16.37h
batch 300 | examples/s: 27.87 | loss: 0.73725 | time elapsed: 0.03h | time left: 16.22h
batch 400 | examples/s: 26.41 | loss: 0.72170 | time elapsed: 0.05h | time left: 16.15h
batch 500 | examples/s: 28.21 | loss: 0.72490 | time elapsed: 0.06h | time left: 16.07h
batch 600 | examples/s: 28.41 | loss: 0.72501 | time elapsed: 0.07h | time left: 16.03h
batch 700 | examples/s: 27.80 | loss: 0.72987 | time elapsed: 0.08h | time left: 16.02h
batch 800 | examples/s: 28.22 | loss: 0.71136 | time elapsed: 0.09h | time left: 15.99h
batch 900 | examples/s: 27.35 | loss: 0.71467 | time elapsed: 0.10h | time left: 15.96h
batch 1000 | examples/s: 27.97 | loss: 0.68444 | time elapsed: 0.11h | time left: 15.93h
batch 1100 | examples/s: 27.42 | loss: 0.69316 | time elapsed: 0.12h | time left: 15.91h
batch 1200 | examples/s: 27.93 | loss: 0.69581 | time elapsed: 0.14h | time left: 15.89h
batch 1300 | examples/s: 27.94 | loss: 0.70063 | time elapsed: 0.15h | time left: 15.87h
batch 1400 | examples/s: 28.42 | loss: 0.69808 | time elapsed: 0.16h | time left: 15.85h
batch 1500 | examples/s: 27.84 | loss: 0.69758 | time elapsed: 0.17h | time left: 15.83h
batch 1600 | examples/s: 28.28 | loss: 0.67438 | time elapsed: 0.18h | time left: 15.82h
batch 1700 | examples/s: 27.76 | loss: 0.66091 | time elapsed: 0.19h | time left: 15.80h
batch 1800 | examples/s: 28.23 | loss: 0.68425 | time elapsed: 0.20h | time left: 15.78h
batch 1900 | examples/s: 28.17 | loss: 0.69291 | time elapsed: 0.21h | time left: 15.76h
batch 2000 | examples/s: 28.03 | loss: 0.67278 | time elapsed: 0.23h | time left: 15.75h
batch 2100 | examples/s: 27.81 | loss: 0.67941 | time elapsed: 0.24h | time left: 15.74h
batch 2200 | examples/s: 28.14 | loss: 0.66612 | time elapsed: 0.25h | time left: 15.73h
batch 2300 | examples/s: 27.44 | loss: 0.66738 | time elapsed: 0.26h | time left: 15.72h
batch 2400 | examples/s: 27.91 | loss: 0.64577 | time elapsed: 0.27h | time left: 15.70h
batch 2500 | examples/s: 28.05 | loss: 0.65399 | time elapsed: 0.28h | time left: 15.69h
batch 2600 | examples/s: 27.16 | loss: 0.67445 | time elapsed: 0.29h | time left: 15.69h
batch 2700 | examples/s: 25.79 | loss: 0.72103 | time elapsed: 0.31h | time left: 15.70h
batch 2800 | examples/s: 27.44 | loss: 0.67885 | time elapsed: 0.32h | time left: 15.70h
epoch 0 | val loss: 0.66390 | time cost: 21.83 s |
batch 2900 | examples/s: 25.55 | loss: 0.67821 | time elapsed: 0.34h | time left: 16.03h
batch 3000 | examples/s: 27.81 | loss: 0.66793 | time elapsed: 0.35h | time left: 16.03h
batch 3100 | examples/s: 27.66 | loss: 0.66143 | time elapsed: 0.36h | time left: 16.00h
batch 3200 | examples/s: 25.84 | loss: 0.64713 | time elapsed: 0.37h | time left: 15.99h
batch 3300 | examples/s: 27.91 | loss: 0.64495 | time elapsed: 0.38h | time left: 15.98h
batch 3400 | examples/s: 25.19 | loss: 0.64607 | time elapsed: 0.39h | time left: 15.95h
batch 3500 | examples/s: 28.10 | loss: 0.66006 | time elapsed: 0.41h | time left: 15.94h
batch 3600 | examples/s: 28.06 | loss: 0.64116 | time elapsed: 0.42h | time left: 15.92h
batch 3700 | examples/s: 27.63 | loss: 0.64367 | time elapsed: 0.43h | time left: 15.90h
batch 3800 | examples/s: 27.92 | loss: 0.65218 | time elapsed: 0.44h | time left: 15.88h
batch 3900 | examples/s: 28.05 | loss: 0.63624 | time elapsed: 0.45h | time left: 15.85h
batch 4000 | examples/s: 27.72 | loss: 0.66020 | time elapsed: 0.46h | time left: 15.84h
batch 4100 | examples/s: 27.85 | loss: 0.63495 | time elapsed: 0.47h | time left: 15.82h
batch 4200 | examples/s: 28.09 | loss: 0.64657 | time elapsed: 0.48h | time left: 15.80h
batch 4300 | examples/s: 27.67 | loss: 0.64525 | time elapsed: 0.50h | time left: 15.78h
batch 4400 | examples/s: 27.79 | loss: 0.63566 | time elapsed: 0.51h | time left: 15.76h
batch 4500 | examples/s: 28.03 | loss: 0.62973 | time elapsed: 0.52h | time left: 15.74h
batch 4600 | examples/s: 28.22 | loss: 0.65814 | time elapsed: 0.53h | time left: 15.73h
batch 4700 | examples/s: 28.00 | loss: 0.62481 | time elapsed: 0.54h | time left: 15.71h
batch 4800 | examples/s: 27.88 | loss: 0.63505 | time elapsed: 0.55h | time left: 15.69h
batch 4900 | examples/s: 28.44 | loss: 0.62800 | time elapsed: 0.56h | time left: 15.67h
batch 5000 | examples/s: 28.02 | loss: 0.64399 | time elapsed: 0.57h | time left: 15.66h
batch 5100 | examples/s: 27.14 | loss: 0.62483 | time elapsed: 0.59h | time left: 15.65h
batch 5200 | examples/s: 27.82 | loss: 0.60744 | time elapsed: 0.60h | time left: 15.63h
batch 5300 | examples/s: 28.25 | loss: 0.63892 | time elapsed: 0.61h | time left: 15.62h
batch 5400 | examples/s: 28.06 | loss: 0.63310 | time elapsed: 0.62h | time left: 15.60h
batch 5500 | examples/s: 28.27 | loss: 0.63110 | time elapsed: 0.63h | time left: 15.58h
batch 5600 | examples/s: 28.00 | loss: 0.62893 | time elapsed: 0.64h | time left: 15.57h
epoch 1 | val loss: 0.61853 | time cost: 20.13 s |
batch 5700 | examples/s: 28.01 | loss: 0.61408 | time elapsed: 0.66h | time left: 15.71h
batch 5800 | examples/s: 28.00 | loss: 0.62566 | time elapsed: 0.67h | time left: 15.69h
batch 5900 | examples/s: 27.40 | loss: 0.61154 | time elapsed: 0.68h | time left: 15.68h
batch 6000 | examples/s: 27.94 | loss: 0.61885 | time elapsed: 0.69h | time left: 15.66h
batch 6100 | examples/s: 27.11 | loss: 0.61171 | time elapsed: 0.71h | time left: 15.64h
batch 6200 | examples/s: 26.98 | loss: 0.62152 | time elapsed: 0.72h | time left: 15.63h
batch 6300 | examples/s: 26.79 | loss: 0.63764 | time elapsed: 0.73h | time left: 15.61h
batch 6400 | examples/s: 28.10 | loss: 0.61538 | time elapsed: 0.74h | time left: 15.60h
batch 6500 | examples/s: 28.41 | loss: 0.63848 | time elapsed: 0.75h | time left: 15.58h
batch 6600 | examples/s: 28.18 | loss: 0.60483 | time elapsed: 0.76h | time left: 15.57h
batch 6700 | examples/s: 25.65 | loss: 0.60912 | time elapsed: 0.77h | time left: 15.56h
batch 6800 | examples/s: 28.15 | loss: 0.61427 | time elapsed: 0.79h | time left: 15.54h
batch 6900 | examples/s: 27.98 | loss: 0.61963 | time elapsed: 0.80h | time left: 15.53h
batch 7000 | examples/s: 28.06 | loss: 0.60552 | time elapsed: 0.81h | time left: 15.51h
batch 7100 | examples/s: 27.96 | loss: 0.61382 | time elapsed: 0.82h | time left: 15.50h
batch 7200 | examples/s: 27.66 | loss: 0.61785 | time elapsed: 0.83h | time left: 15.49h
batch 7300 | examples/s: 27.44 | loss: 0.60365 | time elapsed: 0.84h | time left: 15.47h
batch 7400 | examples/s: 27.62 | loss: 0.63037 | time elapsed: 0.85h | time left: 15.46h
batch 7500 | examples/s: 27.70 | loss: 0.62598 | time elapsed: 0.87h | time left: 15.44h
batch 7600 | examples/s: 27.32 | loss: 0.61322 | time elapsed: 0.88h | time left: 15.43h
batch 7700 | examples/s: 27.66 | loss: 0.62030 | time elapsed: 0.89h | time left: 15.42h
batch 7800 | examples/s: 27.90 | loss: 0.59910 | time elapsed: 0.90h | time left: 15.40h
batch 7900 | examples/s: 28.00 | loss: 0.63004 | time elapsed: 0.91h | time left: 15.39h
batch 8000 | examples/s: 28.07 | loss: 0.62705 | time elapsed: 0.92h | time left: 15.37h
batch 8100 | examples/s: 27.66 | loss: 0.59545 | time elapsed: 0.93h | time left: 15.36h
batch 8200 | examples/s: 27.52 | loss: 0.59642 | time elapsed: 0.95h | time left: 15.34h
batch 8300 | examples/s: 27.43 | loss: 0.61234 | time elapsed: 0.96h | time left: 15.33h
batch 8400 | examples/s: 26.45 | loss: 0.60877 | time elapsed: 0.97h | time left: 15.32h
epoch 2 | val loss: 0.60458 | time cost: 19.78 s |
batch 8500 | examples/s: 28.41 | loss: 0.59881 | time elapsed: 0.99h | time left: 15.41h
batch 8600 | examples/s: 27.09 | loss: 0.58898 | time elapsed: 1.00h | time left: 15.39h
batch 8700 | examples/s: 27.95 | loss: 0.60074 | time elapsed: 1.01h | time left: 15.38h
batch 8800 | examples/s: 27.74 | loss: 0.60189 | time elapsed: 1.02h | time left: 15.36h
batch 8900 | examples/s: 27.76 | loss: 0.59129 | time elapsed: 1.03h | time left: 15.35h
batch 9000 | examples/s: 25.05 | loss: 0.60457 | time elapsed: 1.04h | time left: 15.33h
batch 9100 | examples/s: 28.10 | loss: 0.59251 | time elapsed: 1.05h | time left: 15.32h
batch 9200 | examples/s: 28.11 | loss: 0.60211 | time elapsed: 1.07h | time left: 15.30h
batch 9300 | examples/s: 28.03 | loss: 0.61766 | time elapsed: 1.08h | time left: 15.28h
batch 9400 | examples/s: 27.34 | loss: 0.60896 | time elapsed: 1.09h | time left: 15.27h
batch 9500 | examples/s: 28.00 | loss: 0.60107 | time elapsed: 1.10h | time left: 15.25h
batch 9600 | examples/s: 25.46 | loss: 0.62332 | time elapsed: 1.11h | time left: 15.24h
batch 9700 | examples/s: 28.42 | loss: 0.61228 | time elapsed: 1.12h | time left: 15.23h
batch 9800 | examples/s: 28.02 | loss: 0.59998 | time elapsed: 1.13h | time left: 15.21h
batch 9900 | examples/s: 27.57 | loss: 0.59430 | time elapsed: 1.15h | time left: 15.20h
batch 10000 | examples/s: 27.21 | loss: 0.60932 | time elapsed: 1.16h | time left: 15.18h
batch 10100 | examples/s: 27.61 | loss: 0.58495 | time elapsed: 1.17h | time left: 15.17h
batch 10200 | examples/s: 28.20 | loss: 0.58354 | time elapsed: 1.18h | time left: 15.15h
batch 10300 | examples/s: 27.56 | loss: 0.60158 | time elapsed: 1.19h | time left: 15.14h
batch 10400 | examples/s: 27.61 | loss: 0.59956 | time elapsed: 1.20h | time left: 15.12h
batch 10500 | examples/s: 27.97 | loss: 0.59452 | time elapsed: 1.21h | time left: 15.11h
batch 10600 | examples/s: 27.98 | loss: 0.60024 | time elapsed: 1.22h | time left: 15.10h
batch 10700 | examples/s: 28.04 | loss: 0.59445 | time elapsed: 1.24h | time left: 15.08h
batch 10800 | examples/s: 27.70 | loss: 0.60514 | time elapsed: 1.25h | time left: 15.07h
batch 10900 | examples/s: 26.77 | loss: 0.59880 | time elapsed: 1.26h | time left: 15.05h
batch 11000 | examples/s: 28.04 | loss: 0.59172 | time elapsed: 1.27h | time left: 15.04h
batch 11100 | examples/s: 27.52 | loss: 0.58568 | time elapsed: 1.28h | time left: 15.03h
batch 11200 | examples/s: 27.67 | loss: 0.59979 | time elapsed: 1.29h | time left: 15.01h
batch 11300 | examples/s: 27.83 | loss: 0.59181 | time elapsed: 1.30h | time left: 15.00h
epoch 3 | val loss: 0.59112 | time cost: 19.43 s |
batch 11400 | examples/s: 28.20 | loss: 0.59499 | time elapsed: 1.32h | time left: 15.06h
batch 11500 | examples/s: 26.93 | loss: 0.57742 | time elapsed: 1.33h | time left: 15.04h
batch 11600 | examples/s: 28.02 | loss: 0.59260 | time elapsed: 1.34h | time left: 15.03h
batch 11700 | examples/s: 28.04 | loss: 0.59889 | time elapsed: 1.36h | time left: 15.01h
batch 11800 | examples/s: 27.50 | loss: 0.58863 | time elapsed: 1.37h | time left: 15.00h
batch 11900 | examples/s: 27.94 | loss: 0.58095 | time elapsed: 1.38h | time left: 14.99h
batch 12000 | examples/s: 27.93 | loss: 0.57710 | time elapsed: 1.39h | time left: 14.97h
batch 12100 | examples/s: 27.49 | loss: 0.57062 | time elapsed: 1.40h | time left: 14.96h
batch 12200 | examples/s: 27.93 | loss: 0.58864 | time elapsed: 1.41h | time left: 14.94h
batch 12300 | examples/s: 26.62 | loss: 0.59060 | time elapsed: 1.42h | time left: 14.93h
batch 12400 | examples/s: 28.17 | loss: 0.58837 | time elapsed: 1.44h | time left: 14.92h
batch 12500 | examples/s: 28.07 | loss: 0.60679 | time elapsed: 1.45h | time left: 14.90h
batch 12600 | examples/s: 28.11 | loss: 0.58561 | time elapsed: 1.46h | time left: 14.89h
batch 12700 | examples/s: 27.61 | loss: 0.57967 | time elapsed: 1.47h | time left: 14.87h
batch 12800 | examples/s: 28.08 | loss: 0.57734 | time elapsed: 1.48h | time left: 14.86h
batch 12900 | examples/s: 27.35 | loss: 0.58531 | time elapsed: 1.49h | time left: 14.84h
batch 13000 | examples/s: 28.00 | loss: 0.58286 | time elapsed: 1.50h | time left: 14.83h
batch 13100 | examples/s: 28.15 | loss: 0.59370 | time elapsed: 1.51h | time left: 14.82h
batch 13200 | examples/s: 27.10 | loss: 0.58994 | time elapsed: 1.53h | time left: 14.80h
batch 13300 | examples/s: 27.84 | loss: 0.59681 | time elapsed: 1.54h | time left: 14.79h
batch 13400 | examples/s: 28.26 | loss: 0.58336 | time elapsed: 1.55h | time left: 14.77h
batch 13500 | examples/s: 28.00 | loss: 0.58642 | time elapsed: 1.56h | time left: 14.76h
batch 13600 | examples/s: 28.19 | loss: 0.58522 | time elapsed: 1.57h | time left: 14.75h
batch 13700 | examples/s: 28.18 | loss: 0.56576 | time elapsed: 1.58h | time left: 14.73h
batch 13800 | examples/s: 28.04 | loss: 0.58969 | time elapsed: 1.59h | time left: 14.72h
batch 13900 | examples/s: 27.73 | loss: 0.57734 | time elapsed: 1.61h | time left: 14.71h
batch 14000 | examples/s: 28.26 | loss: 0.56749 | time elapsed: 1.62h | time left: 14.69h
batch 14100 | examples/s: 28.04 | loss: 0.58815 | time elapsed: 1.63h | time left: 14.68h
epoch 4 | val loss: 0.58245 | time cost: 20.29 s |
batch 14200 | examples/s: 28.02 | loss: 0.58831 | time elapsed: 1.65h | time left: 14.73h
batch 14300 | examples/s: 28.00 | loss: 0.56782 | time elapsed: 1.66h | time left: 14.71h
batch 14400 | examples/s: 27.89 | loss: 0.57117 | time elapsed: 1.67h | time left: 14.70h
batch 14500 | examples/s: 27.96 | loss: 0.56950 | time elapsed: 1.68h | time left: 14.68h
batch 14600 | examples/s: 27.98 | loss: 0.58888 | time elapsed: 1.69h | time left: 14.67h
batch 14700 | examples/s: 26.76 | loss: 0.58136 | time elapsed: 1.70h | time left: 14.66h
batch 14800 | examples/s: 28.12 | loss: 0.58728 | time elapsed: 1.71h | time left: 14.64h
batch 14900 | examples/s: 27.82 | loss: 0.57958 | time elapsed: 1.73h | time left: 14.63h
batch 15000 | examples/s: 28.14 | loss: 0.57694 | time elapsed: 1.74h | time left: 14.62h
batch 15100 | examples/s: 27.88 | loss: 0.57732 | time elapsed: 1.75h | time left: 14.60h
batch 15200 | examples/s: 27.37 | loss: 0.58374 | time elapsed: 1.76h | time left: 14.59h
batch 15300 | examples/s: 28.06 | loss: 0.56564 | time elapsed: 1.77h | time left: 14.58h
batch 15400 | examples/s: 27.45 | loss: 0.59108 | time elapsed: 1.78h | time left: 14.56h
batch 15500 | examples/s: 25.83 | loss: 0.59230 | time elapsed: 1.79h | time left: 14.55h
batch 15600 | examples/s: 28.31 | loss: 0.56872 | time elapsed: 1.81h | time left: 14.54h
batch 15700 | examples/s: 26.80 | loss: 0.55894 | time elapsed: 1.82h | time left: 14.53h
batch 15800 | examples/s: 27.79 | loss: 0.57236 | time elapsed: 1.83h | time left: 14.51h
batch 15900 | examples/s: 27.93 | loss: 0.56903 | time elapsed: 1.84h | time left: 14.50h
batch 16000 | examples/s: 27.88 | loss: 0.56240 | time elapsed: 1.85h | time left: 14.49h
batch 16100 | examples/s: 27.68 | loss: 0.58101 | time elapsed: 1.86h | time left: 14.47h
batch 16200 | examples/s: 28.12 | loss: 0.57149 | time elapsed: 1.87h | time left: 14.46h
batch 16300 | examples/s: 28.45 | loss: 0.56174 | time elapsed: 1.88h | time left: 14.45h
batch 16400 | examples/s: 27.90 | loss: 0.57999 | time elapsed: 1.90h | time left: 14.43h
batch 16500 | examples/s: 28.02 | loss: 0.56800 | time elapsed: 1.91h | time left: 14.42h
batch 16600 | examples/s: 27.32 | loss: 0.57423 | time elapsed: 1.92h | time left: 14.41h
batch 16700 | examples/s: 28.31 | loss: 0.55654 | time elapsed: 1.93h | time left: 14.39h
batch 16800 | examples/s: 28.19 | loss: 0.58644 | time elapsed: 1.94h | time left: 14.38h
batch 16900 | examples/s: 28.26 | loss: 0.56861 | time elapsed: 1.95h | time left: 14.37h
epoch 5 | val loss: 0.57524 | time cost: 19.93 s |
batch 17000 | examples/s: 28.06 | loss: 0.56152 | time elapsed: 1.97h | time left: 14.40h
batch 17100 | examples/s: 27.80 | loss: 0.57906 | time elapsed: 1.98h | time left: 14.39h
batch 17200 | examples/s: 27.31 | loss: 0.57905 | time elapsed: 1.99h | time left: 14.38h
batch 17300 | examples/s: 28.10 | loss: 0.57869 | time elapsed: 2.00h | time left: 14.36h
batch 17400 | examples/s: 27.79 | loss: 0.56567 | time elapsed: 2.02h | time left: 14.35h
batch 17500 | examples/s: 27.10 | loss: 0.55893 | time elapsed: 2.03h | time left: 14.34h
batch 17600 | examples/s: 27.41 | loss: 0.56293 | time elapsed: 2.04h | time left: 14.32h
batch 17700 | examples/s: 27.67 | loss: 0.56714 | time elapsed: 2.05h | time left: 14.31h
batch 17800 | examples/s: 26.64 | loss: 0.57224 | time elapsed: 2.06h | time left: 14.30h
batch 17900 | examples/s: 27.76 | loss: 0.56296 | time elapsed: 2.07h | time left: 14.28h
batch 18000 | examples/s: 28.09 | loss: 0.57317 | time elapsed: 2.08h | time left: 14.27h
batch 18100 | examples/s: 27.59 | loss: 0.56729 | time elapsed: 2.10h | time left: 14.26h
batch 18200 | examples/s: 27.98 | loss: 0.56039 | time elapsed: 2.11h | time left: 14.24h
batch 18300 | examples/s: 27.50 | loss: 0.56186 | time elapsed: 2.12h | time left: 14.23h
batch 18400 | examples/s: 28.06 | loss: 0.55748 | time elapsed: 2.13h | time left: 14.22h
batch 18500 | examples/s: 27.99 | loss: 0.56816 | time elapsed: 2.14h | time left: 14.21h
batch 18600 | examples/s: 27.98 | loss: 0.55835 | time elapsed: 2.15h | time left: 14.19h
batch 18700 | examples/s: 27.87 | loss: 0.56518 | time elapsed: 2.16h | time left: 14.18h
batch 18800 | examples/s: 27.55 | loss: 0.55519 | time elapsed: 2.18h | time left: 14.17h
batch 18900 | examples/s: 27.43 | loss: 0.57370 | time elapsed: 2.19h | time left: 14.15h
batch 19000 | examples/s: 27.90 | loss: 0.57331 | time elapsed: 2.20h | time left: 14.14h
batch 19100 | examples/s: 27.63 | loss: 0.58008 | time elapsed: 2.21h | time left: 14.13h
batch 19200 | examples/s: 27.27 | loss: 0.56507 | time elapsed: 2.22h | time left: 14.12h
batch 19300 | examples/s: 27.61 | loss: 0.57320 | time elapsed: 2.23h | time left: 14.10h
batch 19400 | examples/s: 27.84 | loss: 0.56481 | time elapsed: 2.24h | time left: 14.09h
batch 19500 | examples/s: 28.44 | loss: 0.53896 | time elapsed: 2.25h | time left: 14.08h
batch 19600 | examples/s: 27.79 | loss: 0.55673 | time elapsed: 2.27h | time left: 14.06h
batch 19700 | examples/s: 26.84 | loss: 0.55677 | time elapsed: 2.28h | time left: 14.05h
epoch 6 | val loss: 0.56634 | time cost: 19.47 s |
batch 19800 | examples/s: 26.34 | loss: 0.58285 | time elapsed: 2.30h | time left: 14.08h
batch 19900 | examples/s: 27.61 | loss: 0.55737 | time elapsed: 2.31h | time left: 14.07h
batch 20000 | examples/s: 27.83 | loss: 0.55288 | time elapsed: 2.32h | time left: 14.05h
batch 20100 | examples/s: 28.43 | loss: 0.57382 | time elapsed: 2.33h | time left: 14.04h
batch 20200 | examples/s: 26.61 | loss: 0.55117 | time elapsed: 2.34h | time left: 14.03h
batch 20300 | examples/s: 25.43 | loss: 0.55244 | time elapsed: 2.35h | time left: 14.01h
batch 20400 | examples/s: 27.62 | loss: 0.56656 | time elapsed: 2.36h | time left: 14.00h
batch 20500 | examples/s: 27.76 | loss: 0.55803 | time elapsed: 2.38h | time left: 13.99h
batch 20600 | examples/s: 27.45 | loss: 0.56880 | time elapsed: 2.39h | time left: 13.98h
batch 20700 | examples/s: 28.36 | loss: 0.57564 | time elapsed: 2.40h | time left: 13.96h
batch 20800 | examples/s: 27.53 | loss: 0.56959 | time elapsed: 2.41h | time left: 13.95h
batch 20900 | examples/s: 28.22 | loss: 0.55820 | time elapsed: 2.42h | time left: 13.94h
batch 21000 | examples/s: 27.06 | loss: 0.56081 | time elapsed: 2.43h | time left: 13.93h
batch 21100 | examples/s: 28.14 | loss: 0.55782 | time elapsed: 2.44h | time left: 13.91h
batch 21200 | examples/s: 27.25 | loss: 0.55757 | time elapsed: 2.45h | time left: 13.90h
batch 21300 | examples/s: 26.43 | loss: 0.56202 | time elapsed: 2.47h | time left: 13.89h
batch 21400 | examples/s: 27.40 | loss: 0.56269 | time elapsed: 2.48h | time left: 13.88h
batch 21500 | examples/s: 27.25 | loss: 0.54771 | time elapsed: 2.49h | time left: 13.86h
batch 21600 | examples/s: 27.73 | loss: 0.55927 | time elapsed: 2.50h | time left: 13.85h
batch 21700 | examples/s: 27.68 | loss: 0.55276 | time elapsed: 2.51h | time left: 13.84h
batch 21800 | examples/s: 27.52 | loss: 0.55022 | time elapsed: 2.52h | time left: 13.82h
batch 21900 | examples/s: 27.81 | loss: 0.55529 | time elapsed: 2.53h | time left: 13.81h
batch 22000 | examples/s: 28.44 | loss: 0.55172 | time elapsed: 2.55h | time left: 13.80h
batch 22100 | examples/s: 27.63 | loss: 0.54654 | time elapsed: 2.56h | time left: 13.79h
batch 22200 | examples/s: 27.16 | loss: 0.54917 | time elapsed: 2.57h | time left: 13.77h
batch 22300 | examples/s: 27.61 | loss: 0.55082 | time elapsed: 2.58h | time left: 13.76h
batch 22400 | examples/s: 27.07 | loss: 0.55593 | time elapsed: 2.59h | time left: 13.75h
batch 22500 | examples/s: 27.27 | loss: 0.57120 | time elapsed: 2.60h | time left: 13.74h
batch 22600 | examples/s: 28.15 | loss: 0.56622 | time elapsed: 2.61h | time left: 13.73h
epoch 7 | val loss: 0.55740 | time cost: 19.64 s |
batch 22700 | examples/s: 27.34 | loss: 0.55705 | time elapsed: 2.63h | time left: 13.75h
batch 22800 | examples/s: 28.07 | loss: 0.53786 | time elapsed: 2.64h | time left: 13.73h
batch 22900 | examples/s: 27.68 | loss: 0.54565 | time elapsed: 2.66h | time left: 13.72h
batch 23000 | examples/s: 27.91 | loss: 0.54827 | time elapsed: 2.67h | time left: 13.71h
batch 23100 | examples/s: 26.96 | loss: 0.56558 | time elapsed: 2.68h | time left: 13.70h
batch 23200 | examples/s: 28.32 | loss: 0.57106 | time elapsed: 2.69h | time left: 13.69h
batch 23300 | examples/s: 26.23 | loss: 0.56129 | time elapsed: 2.70h | time left: 13.68h
batch 23400 | examples/s: 26.82 | loss: 0.55523 | time elapsed: 2.71h | time left: 13.66h
batch 23500 | examples/s: 27.83 | loss: 0.54732 | time elapsed: 2.72h | time left: 13.65h
batch 23600 | examples/s: 26.94 | loss: 0.55432 | time elapsed: 2.74h | time left: 13.64h
batch 23700 | examples/s: 27.85 | loss: 0.55461 | time elapsed: 2.75h | time left: 13.63h
batch 23800 | examples/s: 27.59 | loss: 0.55278 | time elapsed: 2.76h | time left: 13.61h
batch 23900 | examples/s: 26.41 | loss: 0.53356 | time elapsed: 2.77h | time left: 13.60h
batch 24000 | examples/s: 27.46 | loss: 0.56431 | time elapsed: 2.78h | time left: 13.59h
batch 24100 | examples/s: 27.81 | loss: 0.55644 | time elapsed: 2.79h | time left: 13.58h
batch 24200 | examples/s: 28.33 | loss: 0.54360 | time elapsed: 2.80h | time left: 13.56h
batch 24300 | examples/s: 27.67 | loss: 0.54442 | time elapsed: 2.82h | time left: 13.55h
batch 24400 | examples/s: 27.56 | loss: 0.53933 | time elapsed: 2.83h | time left: 13.54h
batch 24500 | examples/s: 26.72 | loss: 0.56240 | time elapsed: 2.84h | time left: 13.53h
batch 24600 | examples/s: 27.83 | loss: 0.55632 | time elapsed: 2.85h | time left: 13.51h
batch 24700 | examples/s: 28.00 | loss: 0.55519 | time elapsed: 2.86h | time left: 13.50h
batch 24800 | examples/s: 26.98 | loss: 0.54791 | time elapsed: 2.87h | time left: 13.49h
batch 24900 | examples/s: 26.99 | loss: 0.54836 | time elapsed: 2.88h | time left: 13.48h
batch 25000 | examples/s: 25.94 | loss: 0.55263 | time elapsed: 2.90h | time left: 13.46h
batch 25100 | examples/s: 28.15 | loss: 0.55512 | time elapsed: 2.91h | time left: 13.45h
batch 25200 | examples/s: 27.89 | loss: 0.54543 | time elapsed: 2.92h | time left: 13.44h
batch 25300 | examples/s: 27.87 | loss: 0.55148 | time elapsed: 2.93h | time left: 13.43h
batch 25400 | examples/s: 27.10 | loss: 0.55627 | time elapsed: 2.94h | time left: 13.41h
epoch 8 | val loss: 0.55619 | time cost: 19.61 s |
batch 25500 | examples/s: 27.52 | loss: 0.55487 | time elapsed: 2.96h | time left: 13.43h
batch 25600 | examples/s: 27.71 | loss: 0.55327 | time elapsed: 2.97h | time left: 13.42h
batch 25700 | examples/s: 28.44 | loss: 0.54799 | time elapsed: 2.98h | time left: 13.41h
batch 25800 | examples/s: 28.01 | loss: 0.54375 | time elapsed: 2.99h | time left: 13.39h
batch 25900 | examples/s: 27.23 | loss: 0.56455 | time elapsed: 3.00h | time left: 13.38h
batch 26000 | examples/s: 28.04 | loss: 0.53730 | time elapsed: 3.02h | time left: 13.37h
batch 26100 | examples/s: 27.92 | loss: 0.54794 | time elapsed: 3.03h | time left: 13.36h
batch 26200 | examples/s: 27.11 | loss: 0.54697 | time elapsed: 3.04h | time left: 13.34h
batch 26300 | examples/s: 27.91 | loss: 0.54647 | time elapsed: 3.05h | time left: 13.33h
batch 26400 | examples/s: 27.61 | loss: 0.54723 | time elapsed: 3.06h | time left: 13.32h
batch 26500 | examples/s: 28.01 | loss: 0.55877 | time elapsed: 3.07h | time left: 13.31h
batch 26600 | examples/s: 28.01 | loss: 0.54652 | time elapsed: 3.08h | time left: 13.29h
batch 26700 | examples/s: 26.86 | loss: 0.54411 | time elapsed: 3.10h | time left: 13.28h
batch 26800 | examples/s: 27.71 | loss: 0.57523 | time elapsed: 3.11h | time left: 13.27h
batch 26900 | examples/s: 28.15 | loss: 0.53494 | time elapsed: 3.12h | time left: 13.26h
batch 27000 | examples/s: 27.80 | loss: 0.54616 | time elapsed: 3.13h | time left: 13.24h
batch 27100 | examples/s: 27.53 | loss: 0.54009 | time elapsed: 3.14h | time left: 13.23h
batch 27200 | examples/s: 26.88 | loss: 0.55100 | time elapsed: 3.15h | time left: 13.22h
batch 27300 | examples/s: 27.12 | loss: 0.54020 | time elapsed: 3.16h | time left: 13.21h
batch 27400 | examples/s: 28.05 | loss: 0.53739 | time elapsed: 3.18h | time left: 13.20h
batch 27500 | examples/s: 27.02 | loss: 0.54698 | time elapsed: 3.19h | time left: 13.18h
batch 27600 | examples/s: 27.77 | loss: 0.55193 | time elapsed: 3.20h | time left: 13.17h
batch 27700 | examples/s: 26.60 | loss: 0.54568 | time elapsed: 3.21h | time left: 13.16h
batch 27800 | examples/s: 28.09 | loss: 0.52324 | time elapsed: 3.22h | time left: 13.15h
batch 27900 | examples/s: 26.37 | loss: 0.54287 | time elapsed: 3.23h | time left: 13.13h
batch 28000 | examples/s: 27.46 | loss: 0.55190 | time elapsed: 3.24h | time left: 13.12h
batch 28100 | examples/s: 27.88 | loss: 0.52904 | time elapsed: 3.26h | time left: 13.11h
batch 28200 | examples/s: 27.43 | loss: 0.55778 | time elapsed: 3.27h | time left: 13.10h
epoch 9 | val loss: 0.55467 | time cost: 19.70 s |
batch 28300 | examples/s: 26.89 | loss: 0.53381 | time elapsed: 3.29h | time left: 13.12h
batch 28400 | examples/s: 28.15 | loss: 0.54251 | time elapsed: 3.30h | time left: 13.10h
batch 28500 | examples/s: 27.66 | loss: 0.54879 | time elapsed: 3.31h | time left: 13.09h
batch 28600 | examples/s: 28.16 | loss: 0.54543 | time elapsed: 3.32h | time left: 13.08h
batch 28700 | examples/s: 26.92 | loss: 0.54069 | time elapsed: 3.33h | time left: 13.07h
batch 28800 | examples/s: 27.20 | loss: 0.53774 | time elapsed: 3.34h | time left: 13.05h
batch 28900 | examples/s: 27.72 | loss: 0.52464 | time elapsed: 3.35h | time left: 13.04h
batch 29000 | examples/s: 27.86 | loss: 0.52343 | time elapsed: 3.37h | time left: 13.03h
batch 29100 | examples/s: 27.57 | loss: 0.54460 | time elapsed: 3.38h | time left: 13.02h
batch 29200 | examples/s: 28.30 | loss: 0.53247 | time elapsed: 3.39h | time left: 13.00h
batch 29300 | examples/s: 28.11 | loss: 0.54299 | time elapsed: 3.40h | time left: 12.99h
batch 29400 | examples/s: 27.88 | loss: 0.55855 | time elapsed: 3.41h | time left: 12.98h
batch 29500 | examples/s: 27.89 | loss: 0.53500 | time elapsed: 3.42h | time left: 12.97h
batch 29600 | examples/s: 27.83 | loss: 0.53527 | time elapsed: 3.43h | time left: 12.95h
batch 29700 | examples/s: 28.27 | loss: 0.54673 | time elapsed: 3.45h | time left: 12.94h
batch 29800 | examples/s: 28.29 | loss: 0.52468 | time elapsed: 3.46h | time left: 12.93h
batch 29900 | examples/s: 27.94 | loss: 0.54091 | time elapsed: 3.47h | time left: 12.92h
batch 30000 | examples/s: 27.46 | loss: 0.53595 | time elapsed: 3.48h | time left: 12.90h
batch 30100 | examples/s: 28.12 | loss: 0.53742 | time elapsed: 3.49h | time left: 12.89h
batch 30200 | examples/s: 27.91 | loss: 0.54317 | time elapsed: 3.50h | time left: 12.88h
batch 30300 | examples/s: 28.24 | loss: 0.54872 | time elapsed: 3.51h | time left: 12.86h
batch 30400 | examples/s: 28.07 | loss: 0.54492 | time elapsed: 3.52h | time left: 12.85h
batch 30500 | examples/s: 28.14 | loss: 0.56244 | time elapsed: 3.54h | time left: 12.84h
batch 30600 | examples/s: 27.58 | loss: 0.54110 | time elapsed: 3.55h | time left: 12.83h
batch 30700 | examples/s: 26.83 | loss: 0.53740 | time elapsed: 3.56h | time left: 12.81h
batch 30800 | examples/s: 27.69 | loss: 0.54616 | time elapsed: 3.57h | time left: 12.80h
batch 30900 | examples/s: 27.76 | loss: 0.53993 | time elapsed: 3.58h | time left: 12.79h
batch 31000 | examples/s: 26.69 | loss: 0.55069 | time elapsed: 3.59h | time left: 12.78h
epoch 10 | val loss: 0.54693 | time cost: 19.51 s |
batch 31100 | examples/s: 27.42 | loss: 0.53400 | time elapsed: 3.61h | time left: 12.79h
batch 31200 | examples/s: 27.98 | loss: 0.53659 | time elapsed: 3.62h | time left: 12.77h
batch 31300 | examples/s: 27.79 | loss: 0.54275 | time elapsed: 3.63h | time left: 12.76h
batch 31400 | examples/s: 27.44 | loss: 0.53635 | time elapsed: 3.64h | time left: 12.75h
batch 31500 | examples/s: 27.83 | loss: 0.54994 | time elapsed: 3.66h | time left: 12.74h
batch 31600 | examples/s: 27.89 | loss: 0.53549 | time elapsed: 3.67h | time left: 12.72h
batch 31700 | examples/s: 26.99 | loss: 0.53266 | time elapsed: 3.68h | time left: 12.71h
batch 31800 | examples/s: 28.12 | loss: 0.53227 | time elapsed: 3.69h | time left: 12.70h
batch 31900 | examples/s: 28.06 | loss: 0.54250 | time elapsed: 3.70h | time left: 12.69h
batch 32000 | examples/s: 28.52 | loss: 0.53283 | time elapsed: 3.71h | time left: 12.67h
batch 32100 | examples/s: 27.76 | loss: 0.53259 | time elapsed: 3.72h | time left: 12.66h
batch 32200 | examples/s: 28.01 | loss: 0.54186 | time elapsed: 3.73h | time left: 12.65h
batch 32300 | examples/s: 27.83 | loss: 0.53105 | time elapsed: 3.75h | time left: 12.64h
batch 32400 | examples/s: 28.20 | loss: 0.53571 | time elapsed: 3.76h | time left: 12.62h
batch 32500 | examples/s: 26.71 | loss: 0.53986 | time elapsed: 3.77h | time left: 12.61h
batch 32600 | examples/s: 27.03 | loss: 0.54030 | time elapsed: 3.78h | time left: 12.60h
batch 32700 | examples/s: 28.05 | loss: 0.53717 | time elapsed: 3.79h | time left: 12.59h
batch 32800 | examples/s: 28.07 | loss: 0.53026 | time elapsed: 3.80h | time left: 12.57h
batch 32900 | examples/s: 28.12 | loss: 0.52282 | time elapsed: 3.81h | time left: 12.56h
batch 33000 | examples/s: 27.79 | loss: 0.53676 | time elapsed: 3.83h | time left: 12.55h
batch 33100 | examples/s: 27.49 | loss: 0.53392 | time elapsed: 3.84h | time left: 12.54h
batch 33200 | examples/s: 28.04 | loss: 0.52921 | time elapsed: 3.85h | time left: 12.53h
batch 33300 | examples/s: 27.89 | loss: 0.53921 | time elapsed: 3.86h | time left: 12.51h
batch 33400 | examples/s: 27.94 | loss: 0.52671 | time elapsed: 3.87h | time left: 12.50h
batch 33500 | examples/s: 26.65 | loss: 0.52910 | time elapsed: 3.88h | time left: 12.49h
batch 33600 | examples/s: 27.05 | loss: 0.52691 | time elapsed: 3.89h | time left: 12.48h
batch 33700 | examples/s: 28.03 | loss: 0.53484 | time elapsed: 3.91h | time left: 12.46h
batch 33800 | examples/s: 26.98 | loss: 0.53947 | time elapsed: 3.92h | time left: 12.45h
batch 33900 | examples/s: 26.39 | loss: 0.53383 | time elapsed: 3.93h | time left: 12.44h
epoch 11 | val loss: 0.54389 | time cost: 19.85 s |
batch 34000 | examples/s: 28.41 | loss: 0.53804 | time elapsed: 3.95h | time left: 12.45h
batch 34100 | examples/s: 27.99 | loss: 0.52940 | time elapsed: 3.96h | time left: 12.44h
batch 34200 | examples/s: 28.14 | loss: 0.54314 | time elapsed: 3.97h | time left: 12.42h
batch 34300 | examples/s: 27.06 | loss: 0.53740 | time elapsed: 3.98h | time left: 12.41h
batch 34400 | examples/s: 27.79 | loss: 0.53837 | time elapsed: 3.99h | time left: 12.40h
batch 34500 | examples/s: 27.30 | loss: 0.52681 | time elapsed: 4.00h | time left: 12.39h
batch 34600 | examples/s: 27.74 | loss: 0.54232 | time elapsed: 4.01h | time left: 12.37h
batch 34700 | examples/s: 27.65 | loss: 0.55458 | time elapsed: 4.03h | time left: 12.36h
batch 34800 | examples/s: 27.61 | loss: 0.54335 | time elapsed: 4.04h | time left: 12.35h
batch 34900 | examples/s: 28.08 | loss: 0.53055 | time elapsed: 4.05h | time left: 12.34h
batch 35000 | examples/s: 26.83 | loss: 0.52805 | time elapsed: 4.06h | time left: 12.33h
batch 35100 | examples/s: 27.62 | loss: 0.52866 | time elapsed: 4.07h | time left: 12.31h
batch 35200 | examples/s: 27.87 | loss: 0.54548 | time elapsed: 4.08h | time left: 12.30h
batch 35300 | examples/s: 27.22 | loss: 0.52658 | time elapsed: 4.09h | time left: 12.29h
batch 35400 | examples/s: 27.86 | loss: 0.52625 | time elapsed: 4.11h | time left: 12.28h
batch 35500 | examples/s: 28.70 | loss: 0.52249 | time elapsed: 4.12h | time left: 12.26h
batch 35600 | examples/s: 28.11 | loss: 0.51880 | time elapsed: 4.13h | time left: 12.25h
batch 35700 | examples/s: 28.13 | loss: 0.53723 | time elapsed: 4.14h | time left: 12.24h
batch 35800 | examples/s: 27.63 | loss: 0.53024 | time elapsed: 4.15h | time left: 12.23h
batch 35900 | examples/s: 27.64 | loss: 0.52222 | time elapsed: 4.16h | time left: 12.21h
batch 36000 | examples/s: 27.80 | loss: 0.53110 | time elapsed: 4.17h | time left: 12.20h
batch 36100 | examples/s: 27.93 | loss: 0.53316 | time elapsed: 4.18h | time left: 12.19h
batch 36200 | examples/s: 27.50 | loss: 0.52928 | time elapsed: 4.20h | time left: 12.18h
batch 36300 | examples/s: 28.05 | loss: 0.52257 | time elapsed: 4.21h | time left: 12.16h
batch 36400 | examples/s: 27.85 | loss: 0.53008 | time elapsed: 4.22h | time left: 12.15h
batch 36500 | examples/s: 26.96 | loss: 0.52333 | time elapsed: 4.23h | time left: 12.14h
batch 36600 | examples/s: 26.33 | loss: 0.51696 | time elapsed: 4.24h | time left: 12.13h
batch 36700 | examples/s: 26.88 | loss: 0.54559 | time elapsed: 4.25h | time left: 12.12h
epoch 12 | val loss: 0.53987 | time cost: 19.69 s |
batch 36800 | examples/s: 27.75 | loss: 0.52225 | time elapsed: 4.27h | time left: 12.12h
batch 36900 | examples/s: 28.14 | loss: 0.54262 | time elapsed: 4.28h | time left: 12.11h
batch 37000 | examples/s: 27.79 | loss: 0.51715 | time elapsed: 4.29h | time left: 12.10h
batch 37100 | examples/s: 27.63 | loss: 0.51906 | time elapsed: 4.31h | time left: 12.09h
batch 37200 | examples/s: 28.26 | loss: 0.52697 | time elapsed: 4.32h | time left: 12.07h
batch 37300 | examples/s: 27.79 | loss: 0.51640 | time elapsed: 4.33h | time left: 12.06h
batch 37400 | examples/s: 27.93 | loss: 0.53349 | time elapsed: 4.34h | time left: 12.05h
batch 37500 | examples/s: 28.20 | loss: 0.53589 | time elapsed: 4.35h | time left: 12.04h
batch 37600 | examples/s: 28.31 | loss: 0.53394 | time elapsed: 4.36h | time left: 12.03h
batch 37700 | examples/s: 28.07 | loss: 0.53590 | time elapsed: 4.37h | time left: 12.01h
batch 37800 | examples/s: 27.94 | loss: 0.53261 | time elapsed: 4.38h | time left: 12.00h
batch 37900 | examples/s: 27.45 | loss: 0.51571 | time elapsed: 4.40h | time left: 11.99h
batch 38000 | examples/s: 27.56 | loss: 0.53990 | time elapsed: 4.41h | time left: 11.98h
batch 38100 | examples/s: 27.98 | loss: 0.51508 | time elapsed: 4.42h | time left: 11.96h
batch 38200 | examples/s: 27.27 | loss: 0.53659 | time elapsed: 4.43h | time left: 11.95h
batch 38300 | examples/s: 28.07 | loss: 0.52050 | time elapsed: 4.44h | time left: 11.94h
batch 38400 | examples/s: 27.95 | loss: 0.53286 | time elapsed: 4.45h | time left: 11.93h
batch 38500 | examples/s: 27.27 | loss: 0.52913 | time elapsed: 4.46h | time left: 11.91h
batch 38600 | examples/s: 27.74 | loss: 0.52677 | time elapsed: 4.48h | time left: 11.90h
batch 38700 | examples/s: 28.14 | loss: 0.51739 | time elapsed: 4.49h | time left: 11.89h
batch 38800 | examples/s: 27.86 | loss: 0.53755 | time elapsed: 4.50h | time left: 11.88h
batch 38900 | examples/s: 28.25 | loss: 0.53478 | time elapsed: 4.51h | time left: 11.87h
batch 39000 | examples/s: 27.93 | loss: 0.52800 | time elapsed: 4.52h | time left: 11.85h
batch 39100 | examples/s: 27.43 | loss: 0.51833 | time elapsed: 4.53h | time left: 11.84h
batch 39200 | examples/s: 28.19 | loss: 0.54036 | time elapsed: 4.54h | time left: 11.83h
batch 39300 | examples/s: 27.63 | loss: 0.53033 | time elapsed: 4.56h | time left: 11.82h
batch 39400 | examples/s: 27.61 | loss: 0.52274 | time elapsed: 4.57h | time left: 11.80h
batch 39500 | examples/s: 28.07 | loss: 0.53059 | time elapsed: 4.58h | time left: 11.79h
epoch 13 | val loss: 0.54009 | time cost: 19.56 s |
batch 39600 | examples/s: 27.51 | loss: 0.51761 | time elapsed: 4.60h | time left: 11.80h
batch 39700 | examples/s: 28.15 | loss: 0.51548 | time elapsed: 4.61h | time left: 11.78h
batch 39800 | examples/s: 27.67 | loss: 0.52771 | time elapsed: 4.62h | time left: 11.77h
batch 39900 | examples/s: 27.93 | loss: 0.52854 | time elapsed: 4.63h | time left: 11.76h
batch 40000 | examples/s: 27.79 | loss: 0.51917 | time elapsed: 4.64h | time left: 11.75h
batch 40100 | examples/s: 27.57 | loss: 0.51784 | time elapsed: 4.65h | time left: 11.73h
batch 40200 | examples/s: 27.58 | loss: 0.51525 | time elapsed: 4.66h | time left: 11.72h
batch 40300 | examples/s: 27.84 | loss: 0.53196 | time elapsed: 4.68h | time left: 11.71h
batch 40400 | examples/s: 28.08 | loss: 0.52704 | time elapsed: 4.69h | time left: 11.70h
batch 40500 | examples/s: 27.00 | loss: 0.52040 | time elapsed: 4.70h | time left: 11.69h
batch 40600 | examples/s: 27.57 | loss: 0.53029 | time elapsed: 4.71h | time left: 11.67h
batch 40700 | examples/s: 26.99 | loss: 0.53528 | time elapsed: 4.72h | time left: 11.66h
batch 40800 | examples/s: 27.93 | loss: 0.52507 | time elapsed: 4.73h | time left: 11.65h
batch 40900 | examples/s: 27.84 | loss: 0.53774 | time elapsed: 4.74h | time left: 11.64h
batch 41000 | examples/s: 27.97 | loss: 0.55220 | time elapsed: 4.75h | time left: 11.63h
batch 41100 | examples/s: 25.34 | loss: 0.51517 | time elapsed: 4.77h | time left: 11.61h
batch 41200 | examples/s: 27.36 | loss: 0.52306 | time elapsed: 4.78h | time left: 11.60h
batch 41300 | examples/s: 27.39 | loss: 0.52237 | time elapsed: 4.79h | time left: 11.59h
batch 41400 | examples/s: 27.41 | loss: 0.53614 | time elapsed: 4.80h | time left: 11.58h
batch 41500 | examples/s: 26.33 | loss: 0.51571 | time elapsed: 4.81h | time left: 11.57h
batch 41600 | examples/s: 27.70 | loss: 0.52521 | time elapsed: 4.82h | time left: 11.55h
batch 41700 | examples/s: 25.93 | loss: 0.53407 | time elapsed: 4.83h | time left: 11.54h
batch 41800 | examples/s: 28.06 | loss: 0.51962 | time elapsed: 4.85h | time left: 11.53h
batch 41900 | examples/s: 27.64 | loss: 0.52884 | time elapsed: 4.86h | time left: 11.52h
batch 42000 | examples/s: 28.27 | loss: 0.51925 | time elapsed: 4.87h | time left: 11.51h
batch 42100 | examples/s: 28.31 | loss: 0.52827 | time elapsed: 4.88h | time left: 11.49h
batch 42200 | examples/s: 28.01 | loss: 0.51438 | time elapsed: 4.89h | time left: 11.48h
batch 42300 | examples/s: 28.15 | loss: 0.51487 | time elapsed: 4.90h | time left: 11.47h
epoch 14 | val loss: 0.53422 | time cost: 19.63 s |
batch 42400 | examples/s: 28.20 | loss: 0.50855 | time elapsed: 4.92h | time left: 11.47h
batch 42500 | examples/s: 28.08 | loss: 0.52283 | time elapsed: 4.93h | time left: 11.46h
batch 42600 | examples/s: 27.48 | loss: 0.52835 | time elapsed: 4.94h | time left: 11.45h
batch 42700 | examples/s: 28.09 | loss: 0.51780 | time elapsed: 4.95h | time left: 11.43h
batch 42800 | examples/s: 27.43 | loss: 0.52930 | time elapsed: 4.97h | time left: 11.42h
batch 42900 | examples/s: 27.51 | loss: 0.52922 | time elapsed: 4.98h | time left: 11.41h
batch 43000 | examples/s: 27.13 | loss: 0.51555 | time elapsed: 4.99h | time left: 11.40h
batch 43100 | examples/s: 27.93 | loss: 0.52610 | time elapsed: 5.00h | time left: 11.39h
batch 43200 | examples/s: 27.83 | loss: 0.52345 | time elapsed: 5.01h | time left: 11.37h
batch 43300 | examples/s: 27.91 | loss: 0.51661 | time elapsed: 5.02h | time left: 11.36h
batch 43400 | examples/s: 28.30 | loss: 0.53383 | time elapsed: 5.03h | time left: 11.35h
batch 43500 | examples/s: 28.27 | loss: 0.52948 | time elapsed: 5.05h | time left: 11.34h
batch 43600 | examples/s: 28.22 | loss: 0.52569 | time elapsed: 5.06h | time left: 11.32h
batch 43700 | examples/s: 25.69 | loss: 0.51718 | time elapsed: 5.07h | time left: 11.31h
batch 43800 | examples/s: 28.05 | loss: 0.52151 | time elapsed: 5.08h | time left: 11.30h
batch 43900 | examples/s: 28.11 | loss: 0.52034 | time elapsed: 5.09h | time left: 11.29h
batch 44000 | examples/s: 28.43 | loss: 0.51299 | time elapsed: 5.10h | time left: 11.28h
batch 44100 | examples/s: 27.37 | loss: 0.51152 | time elapsed: 5.11h | time left: 11.26h
batch 44200 | examples/s: 28.11 | loss: 0.52392 | time elapsed: 5.12h | time left: 11.25h
batch 44300 | examples/s: 27.25 | loss: 0.51885 | time elapsed: 5.14h | time left: 11.24h
batch 44400 | examples/s: 27.74 | loss: 0.52187 | time elapsed: 5.15h | time left: 11.23h
batch 44500 | examples/s: 28.10 | loss: 0.51310 | time elapsed: 5.16h | time left: 11.22h
batch 44600 | examples/s: 27.36 | loss: 0.52877 | time elapsed: 5.17h | time left: 11.21h
batch 44700 | examples/s: 28.03 | loss: 0.52047 | time elapsed: 5.18h | time left: 11.19h
batch 44800 | examples/s: 28.30 | loss: 0.51893 | time elapsed: 5.19h | time left: 11.18h
batch 44900 | examples/s: 27.37 | loss: 0.51653 | time elapsed: 5.21h | time left: 11.17h
batch 45000 | examples/s: 26.93 | loss: 0.52179 | time elapsed: 5.22h | time left: 11.16h
batch 45100 | examples/s: 27.73 | loss: 0.51898 | time elapsed: 5.23h | time left: 11.15h
batch 45200 | examples/s: 28.09 | loss: 0.53222 | time elapsed: 5.24h | time left: 11.13h
epoch 15 | val loss: 0.53333 | time cost: 19.50 s |
batch 45300 | examples/s: 27.46 | loss: 0.52792 | time elapsed: 5.26h | time left: 11.14h
batch 45400 | examples/s: 28.19 | loss: 0.51391 | time elapsed: 5.27h | time left: 11.12h
batch 45500 | examples/s: 28.23 | loss: 0.52738 | time elapsed: 5.28h | time left: 11.11h
batch 45600 | examples/s: 27.32 | loss: 0.51131 | time elapsed: 5.29h | time left: 11.10h
batch 45700 | examples/s: 27.51 | loss: 0.52980 | time elapsed: 5.30h | time left: 11.09h
batch 45800 | examples/s: 28.01 | loss: 0.52938 | time elapsed: 5.31h | time left: 11.08h
batch 45900 | examples/s: 27.43 | loss: 0.53064 | time elapsed: 5.33h | time left: 11.06h
batch 46000 | examples/s: 28.01 | loss: 0.50920 | time elapsed: 5.34h | time left: 11.05h
batch 46100 | examples/s: 27.77 | loss: 0.51735 | time elapsed: 5.35h | time left: 11.04h
batch 46200 | examples/s: 26.90 | loss: 0.53017 | time elapsed: 5.36h | time left: 11.03h
batch 46300 | examples/s: 28.19 | loss: 0.51587 | time elapsed: 5.37h | time left: 11.02h
batch 46400 | examples/s: 27.83 | loss: 0.50926 | time elapsed: 5.38h | time left: 11.00h
batch 46500 | examples/s: 27.83 | loss: 0.52442 | time elapsed: 5.39h | time left: 10.99h
batch 46600 | examples/s: 27.78 | loss: 0.52352 | time elapsed: 5.41h | time left: 10.98h
batch 46700 | examples/s: 28.27 | loss: 0.51250 | time elapsed: 5.42h | time left: 10.97h
batch 46800 | examples/s: 27.32 | loss: 0.52371 | time elapsed: 5.43h | time left: 10.95h
batch 46900 | examples/s: 28.33 | loss: 0.52143 | time elapsed: 5.44h | time left: 10.94h
batch 47000 | examples/s: 27.90 | loss: 0.52227 | time elapsed: 5.45h | time left: 10.93h
batch 47100 | examples/s: 28.03 | loss: 0.51485 | time elapsed: 5.46h | time left: 10.92h
batch 47200 | examples/s: 27.96 | loss: 0.50525 | time elapsed: 5.47h | time left: 10.91h
batch 47300 | examples/s: 27.96 | loss: 0.51151 | time elapsed: 5.48h | time left: 10.89h
batch 47400 | examples/s: 28.02 | loss: 0.51372 | time elapsed: 5.50h | time left: 10.88h
batch 47500 | examples/s: 28.23 | loss: 0.52551 | time elapsed: 5.51h | time left: 10.87h
batch 47600 | examples/s: 27.84 | loss: 0.51207 | time elapsed: 5.52h | time left: 10.86h
batch 47700 | examples/s: 27.49 | loss: 0.51506 | time elapsed: 5.53h | time left: 10.85h
batch 47800 | examples/s: 28.15 | loss: 0.51462 | time elapsed: 5.54h | time left: 10.83h
batch 47900 | examples/s: 28.25 | loss: 0.52378 | time elapsed: 5.55h | time left: 10.82h
batch 48000 | examples/s: 28.33 | loss: 0.51523 | time elapsed: 5.56h | time left: 10.81h
epoch 16 | val loss: 0.53711 | time cost: 20.19 s |
batch 48100 | examples/s: 26.62 | loss: 0.50584 | time elapsed: 5.58h | time left: 10.81h
batch 48200 | examples/s: 27.34 | loss: 0.53242 | time elapsed: 5.59h | time left: 10.80h
batch 48300 | examples/s: 27.77 | loss: 0.52075 | time elapsed: 5.60h | time left: 10.79h
batch 48400 | examples/s: 27.98 | loss: 0.51521 | time elapsed: 5.62h | time left: 10.77h
batch 48500 | examples/s: 27.42 | loss: 0.50507 | time elapsed: 5.63h | time left: 10.76h
batch 48600 | examples/s: 27.98 | loss: 0.51472 | time elapsed: 5.64h | time left: 10.75h
batch 48700 | examples/s: 26.86 | loss: 0.52235 | time elapsed: 5.65h | time left: 10.74h
batch 48800 | examples/s: 28.01 | loss: 0.51939 | time elapsed: 5.66h | time left: 10.73h
batch 48900 | examples/s: 27.69 | loss: 0.52069 | time elapsed: 5.67h | time left: 10.71h
batch 49000 | examples/s: 27.97 | loss: 0.51234 | time elapsed: 5.68h | time left: 10.70h
batch 49100 | examples/s: 27.42 | loss: 0.50962 | time elapsed: 5.70h | time left: 10.69h
batch 49200 | examples/s: 27.51 | loss: 0.52320 | time elapsed: 5.71h | time left: 10.68h
batch 49300 | examples/s: 25.94 | loss: 0.51152 | time elapsed: 5.72h | time left: 10.67h
batch 49400 | examples/s: 27.52 | loss: 0.50333 | time elapsed: 5.73h | time left: 10.65h
batch 49500 | examples/s: 27.25 | loss: 0.51375 | time elapsed: 5.74h | time left: 10.64h
batch 49600 | examples/s: 28.26 | loss: 0.52081 | time elapsed: 5.75h | time left: 10.63h
batch 49700 | examples/s: 28.39 | loss: 0.51452 | time elapsed: 5.77h | time left: 10.62h
batch 49800 | examples/s: 27.97 | loss: 0.53214 | time elapsed: 5.78h | time left: 10.61h
batch 49900 | examples/s: 28.19 | loss: 0.51571 | time elapsed: 5.79h | time left: 10.60h
batch 50000 | examples/s: 28.42 | loss: 0.52816 | time elapsed: 5.80h | time left: 10.58h
batch 50100 | examples/s: 27.20 | loss: 0.50946 | time elapsed: 5.81h | time left: 10.57h
batch 50200 | examples/s: 28.21 | loss: 0.50901 | time elapsed: 5.82h | time left: 10.56h
batch 50300 | examples/s: 28.24 | loss: 0.50987 | time elapsed: 5.83h | time left: 10.55h
batch 50400 | examples/s: 27.98 | loss: 0.52336 | time elapsed: 5.84h | time left: 10.54h
batch 50500 | examples/s: 27.58 | loss: 0.51836 | time elapsed: 5.86h | time left: 10.52h
batch 50600 | examples/s: 27.73 | loss: 0.52765 | time elapsed: 5.87h | time left: 10.51h
batch 50700 | examples/s: 27.63 | loss: 0.52055 | time elapsed: 5.88h | time left: 10.50h
batch 50800 | examples/s: 28.26 | loss: 0.51764 | time elapsed: 5.89h | time left: 10.49h
epoch 17 | val loss: 0.52733 | time cost: 19.66 s |
batch 50900 | examples/s: 26.57 | loss: 0.52160 | time elapsed: 5.91h | time left: 10.49h
batch 51000 | examples/s: 27.97 | loss: 0.49834 | time elapsed: 5.92h | time left: 10.47h
batch 51100 | examples/s: 27.88 | loss: 0.50669 | time elapsed: 5.93h | time left: 10.46h
batch 51200 | examples/s: 28.01 | loss: 0.51220 | time elapsed: 5.94h | time left: 10.45h
batch 51300 | examples/s: 27.75 | loss: 0.52103 | time elapsed: 5.95h | time left: 10.44h
batch 51400 | examples/s: 27.72 | loss: 0.50662 | time elapsed: 5.96h | time left: 10.43h
batch 51500 | examples/s: 28.24 | loss: 0.51784 | time elapsed: 5.98h | time left: 10.41h
batch 51600 | examples/s: 27.89 | loss: 0.52456 | time elapsed: 5.99h | time left: 10.40h
batch 51700 | examples/s: 28.30 | loss: 0.51074 | time elapsed: 6.00h | time left: 10.39h
batch 51800 | examples/s: 27.27 | loss: 0.50222 | time elapsed: 6.01h | time left: 10.38h
batch 51900 | examples/s: 27.64 | loss: 0.51160 | time elapsed: 6.02h | time left: 10.37h
batch 52000 | examples/s: 27.14 | loss: 0.52286 | time elapsed: 6.03h | time left: 10.35h
batch 52100 | examples/s: 28.38 | loss: 0.52951 | time elapsed: 6.04h | time left: 10.34h
batch 52200 | examples/s: 28.04 | loss: 0.51418 | time elapsed: 6.06h | time left: 10.33h
batch 52300 | examples/s: 26.89 | loss: 0.52524 | time elapsed: 6.07h | time left: 10.32h
batch 52400 | examples/s: 28.24 | loss: 0.50235 | time elapsed: 6.08h | time left: 10.31h
batch 52500 | examples/s: 28.30 | loss: 0.51285 | time elapsed: 6.09h | time left: 10.29h
batch 52600 | examples/s: 27.83 | loss: 0.51598 | time elapsed: 6.10h | time left: 10.28h
batch 52700 | examples/s: 28.22 | loss: 0.50684 | time elapsed: 6.11h | time left: 10.27h
batch 52800 | examples/s: 27.82 | loss: 0.52414 | time elapsed: 6.12h | time left: 10.26h
batch 52900 | examples/s: 27.96 | loss: 0.50575 | time elapsed: 6.14h | time left: 10.25h
batch 53000 | examples/s: 27.13 | loss: 0.50867 | time elapsed: 6.15h | time left: 10.24h
batch 53100 | examples/s: 28.20 | loss: 0.51243 | time elapsed: 6.16h | time left: 10.22h
batch 53200 | examples/s: 27.44 | loss: 0.50167 | time elapsed: 6.17h | time left: 10.21h
batch 53300 | examples/s: 28.14 | loss: 0.50336 | time elapsed: 6.18h | time left: 10.20h
batch 53400 | examples/s: 27.31 | loss: 0.52239 | time elapsed: 6.19h | time left: 10.19h
batch 53500 | examples/s: 27.96 | loss: 0.52274 | time elapsed: 6.20h | time left: 10.18h
batch 53600 | examples/s: 28.05 | loss: 0.52030 | time elapsed: 6.22h | time left: 10.16h
epoch 18 | val loss: 0.53123 | time cost: 19.95 s |
batch 53700 | examples/s: 27.54 | loss: 0.50561 | time elapsed: 6.23h | time left: 10.16h
batch 53800 | examples/s: 26.16 | loss: 0.50138 | time elapsed: 6.24h | time left: 10.15h
batch 53900 | examples/s: 26.36 | loss: 0.50923 | time elapsed: 6.26h | time left: 10.14h
batch 54000 | examples/s: 28.04 | loss: 0.51058 | time elapsed: 6.27h | time left: 10.13h
batch 54100 | examples/s: 26.97 | loss: 0.50579 | time elapsed: 6.28h | time left: 10.11h
batch 54200 | examples/s: 27.70 | loss: 0.50768 | time elapsed: 6.29h | time left: 10.10h
batch 54300 | examples/s: 27.92 | loss: 0.50967 | time elapsed: 6.30h | time left: 10.09h
batch 54400 | examples/s: 27.69 | loss: 0.51356 | time elapsed: 6.31h | time left: 10.08h
batch 54500 | examples/s: 28.02 | loss: 0.51951 | time elapsed: 6.32h | time left: 10.07h
batch 54600 | examples/s: 26.26 | loss: 0.51696 | time elapsed: 6.34h | time left: 10.06h
batch 54700 | examples/s: 27.16 | loss: 0.52234 | time elapsed: 6.35h | time left: 10.04h
batch 54800 | examples/s: 27.67 | loss: 0.51817 | time elapsed: 6.36h | time left: 10.03h
batch 54900 | examples/s: 27.59 | loss: 0.50741 | time elapsed: 6.37h | time left: 10.02h
batch 55000 | examples/s: 27.17 | loss: 0.50430 | time elapsed: 6.38h | time left: 10.01h
batch 55100 | examples/s: 26.14 | loss: 0.52161 | time elapsed: 6.39h | time left: 10.00h
batch 55200 | examples/s: 27.28 | loss: 0.51475 | time elapsed: 6.40h | time left: 9.98h
batch 55300 | examples/s: 27.71 | loss: 0.49438 | time elapsed: 6.42h | time left: 9.97h
batch 55400 | examples/s: 27.99 | loss: 0.51073 | time elapsed: 6.43h | time left: 9.96h
batch 55500 | examples/s: 28.09 | loss: 0.51545 | time elapsed: 6.44h | time left: 9.95h
batch 55600 | examples/s: 28.00 | loss: 0.53386 | time elapsed: 6.45h | time left: 9.94h
batch 55700 | examples/s: 28.10 | loss: 0.50055 | time elapsed: 6.46h | time left: 9.92h
batch 55800 | examples/s: 27.11 | loss: 0.50084 | time elapsed: 6.47h | time left: 9.91h
batch 55900 | examples/s: 27.86 | loss: 0.50441 | time elapsed: 6.48h | time left: 9.90h
batch 56000 | examples/s: 27.90 | loss: 0.52923 | time elapsed: 6.50h | time left: 9.89h
batch 56100 | examples/s: 27.36 | loss: 0.51276 | time elapsed: 6.51h | time left: 9.88h
batch 56200 | examples/s: 27.33 | loss: 0.49582 | time elapsed: 6.52h | time left: 9.86h
batch 56300 | examples/s: 27.54 | loss: 0.51445 | time elapsed: 6.53h | time left: 9.85h
batch 56400 | examples/s: 28.33 | loss: 0.51593 | time elapsed: 6.54h | time left: 9.84h
batch 56500 | examples/s: 27.51 | loss: 0.51276 | time elapsed: 6.55h | time left: 9.83h
epoch 19 | val loss: 0.52539 | time cost: 19.62 s |
batch 56600 | examples/s: 28.32 | loss: 0.49359 | time elapsed: 6.57h | time left: 9.83h
batch 56700 | examples/s: 27.47 | loss: 0.50928 | time elapsed: 6.58h | time left: 9.81h
batch 56800 | examples/s: 27.11 | loss: 0.50154 | time elapsed: 6.59h | time left: 9.80h
batch 56900 | examples/s: 27.52 | loss: 0.51654 | time elapsed: 6.60h | time left: 9.79h
batch 57000 | examples/s: 27.81 | loss: 0.52039 | time elapsed: 6.62h | time left: 9.78h
batch 57100 | examples/s: 28.20 | loss: 0.51543 | time elapsed: 6.63h | time left: 9.77h
batch 57200 | examples/s: 27.59 | loss: 0.51326 | time elapsed: 6.64h | time left: 9.76h
batch 57300 | examples/s: 27.54 | loss: 0.49812 | time elapsed: 6.65h | time left: 9.74h
batch 57400 | examples/s: 28.32 | loss: 0.49728 | time elapsed: 6.66h | time left: 9.73h
batch 57500 | examples/s: 27.73 | loss: 0.50027 | time elapsed: 6.67h | time left: 9.72h
batch 57600 | examples/s: 27.27 | loss: 0.51695 | time elapsed: 6.68h | time left: 9.71h
batch 57700 | examples/s: 28.24 | loss: 0.51944 | time elapsed: 6.70h | time left: 9.70h
batch 57800 | examples/s: 27.44 | loss: 0.50647 | time elapsed: 6.71h | time left: 9.68h
batch 57900 | examples/s: 27.32 | loss: 0.51059 | time elapsed: 6.72h | time left: 9.67h
batch 58000 | examples/s: 27.72 | loss: 0.51622 | time elapsed: 6.73h | time left: 9.66h
batch 58100 | examples/s: 27.07 | loss: 0.50663 | time elapsed: 6.74h | time left: 9.65h
batch 58200 | examples/s: 27.66 | loss: 0.50549 | time elapsed: 6.75h | time left: 9.64h
batch 58300 | examples/s: 27.86 | loss: 0.51893 | time elapsed: 6.76h | time left: 9.62h
batch 58400 | examples/s: 27.96 | loss: 0.50338 | time elapsed: 6.78h | time left: 9.61h
batch 58500 | examples/s: 26.28 | loss: 0.51162 | time elapsed: 6.79h | time left: 9.60h
batch 58600 | examples/s: 28.38 | loss: 0.50711 | time elapsed: 6.80h | time left: 9.59h
batch 58700 | examples/s: 27.45 | loss: 0.50309 | time elapsed: 6.81h | time left: 9.58h
batch 58800 | examples/s: 26.53 | loss: 0.50274 | time elapsed: 6.82h | time left: 9.56h
batch 58900 | examples/s: 27.83 | loss: 0.51630 | time elapsed: 6.83h | time left: 9.55h
batch 59000 | examples/s: 28.22 | loss: 0.51678 | time elapsed: 6.84h | time left: 9.54h
batch 59100 | examples/s: 27.50 | loss: 0.51291 | time elapsed: 6.85h | time left: 9.53h
batch 59200 | examples/s: 28.07 | loss: 0.49720 | time elapsed: 6.87h | time left: 9.52h
batch 59300 | examples/s: 24.11 | loss: 0.50797 | time elapsed: 6.88h | time left: 9.50h
epoch 20 | val loss: 0.52398 | time cost: 19.64 s |
batch 59400 | examples/s: 26.14 | loss: 0.49923 | time elapsed: 6.90h | time left: 9.50h
batch 59500 | examples/s: 27.16 | loss: 0.49294 | time elapsed: 6.91h | time left: 9.49h
batch 59600 | examples/s: 26.96 | loss: 0.51224 | time elapsed: 6.92h | time left: 9.48h
batch 59700 | examples/s: 27.35 | loss: 0.52141 | time elapsed: 6.93h | time left: 9.47h
batch 59800 | examples/s: 27.94 | loss: 0.51340 | time elapsed: 6.94h | time left: 9.45h
batch 59900 | examples/s: 28.23 | loss: 0.51387 | time elapsed: 6.95h | time left: 9.44h
batch 60000 | examples/s: 27.32 | loss: 0.50148 | time elapsed: 6.96h | time left: 9.43h
batch 60100 | examples/s: 28.07 | loss: 0.51034 | time elapsed: 6.97h | time left: 9.42h
batch 60200 | examples/s: 28.28 | loss: 0.50257 | time elapsed: 6.99h | time left: 9.41h
batch 60300 | examples/s: 28.05 | loss: 0.50653 | time elapsed: 7.00h | time left: 9.39h
batch 60400 | examples/s: 27.91 | loss: 0.51109 | time elapsed: 7.01h | time left: 9.38h
batch 60500 | examples/s: 27.76 | loss: 0.50115 | time elapsed: 7.02h | time left: 9.37h
batch 60600 | examples/s: 27.45 | loss: 0.51429 | time elapsed: 7.03h | time left: 9.36h
batch 60700 | examples/s: 27.99 | loss: 0.49787 | time elapsed: 7.04h | time left: 9.35h
batch 60800 | examples/s: 27.98 | loss: 0.49999 | time elapsed: 7.05h | time left: 9.33h
batch 60900 | examples/s: 27.17 | loss: 0.50024 | time elapsed: 7.07h | time left: 9.32h
batch 61000 | examples/s: 27.65 | loss: 0.51786 | time elapsed: 7.08h | time left: 9.31h
batch 61100 | examples/s: 27.63 | loss: 0.51784 | time elapsed: 7.09h | time left: 9.30h
batch 61200 | examples/s: 27.57 | loss: 0.50071 | time elapsed: 7.10h | time left: 9.29h
batch 61300 | examples/s: 26.71 | loss: 0.51115 | time elapsed: 7.11h | time left: 9.27h
batch 61400 | examples/s: 27.76 | loss: 0.51477 | time elapsed: 7.12h | time left: 9.26h
batch 61500 | examples/s: 28.20 | loss: 0.51048 | time elapsed: 7.13h | time left: 9.25h
batch 61600 | examples/s: 28.40 | loss: 0.50383 | time elapsed: 7.15h | time left: 9.24h
batch 61700 | examples/s: 27.59 | loss: 0.51116 | time elapsed: 7.16h | time left: 9.23h
batch 61800 | examples/s: 27.46 | loss: 0.51114 | time elapsed: 7.17h | time left: 9.22h
batch 61900 | examples/s: 27.19 | loss: 0.50514 | time elapsed: 7.18h | time left: 9.20h
batch 62000 | examples/s: 28.09 | loss: 0.51303 | time elapsed: 7.19h | time left: 9.19h
batch 62100 | examples/s: 27.81 | loss: 0.50957 | time elapsed: 7.20h | time left: 9.18h
epoch 21 | val loss: 0.52180 | time cost: 19.44 s |
batch 62200 | examples/s: 27.49 | loss: 0.49266 | time elapsed: 7.22h | time left: 9.18h
batch 62300 | examples/s: 27.35 | loss: 0.51714 | time elapsed: 7.23h | time left: 9.16h
batch 62400 | examples/s: 27.53 | loss: 0.48798 | time elapsed: 7.24h | time left: 9.15h
batch 62500 | examples/s: 27.79 | loss: 0.50477 | time elapsed: 7.25h | time left: 9.14h
batch 62600 | examples/s: 27.76 | loss: 0.51199 | time elapsed: 7.27h | time left: 9.13h
batch 62700 | examples/s: 28.00 | loss: 0.51042 | time elapsed: 7.28h | time left: 9.12h
batch 62800 | examples/s: 26.87 | loss: 0.49781 | time elapsed: 7.29h | time left: 9.10h
batch 62900 | examples/s: 28.12 | loss: 0.51490 | time elapsed: 7.30h | time left: 9.09h
batch 63000 | examples/s: 27.20 | loss: 0.50243 | time elapsed: 7.31h | time left: 9.08h
batch 63100 | examples/s: 27.69 | loss: 0.49957 | time elapsed: 7.32h | time left: 9.07h
batch 63200 | examples/s: 27.90 | loss: 0.49635 | time elapsed: 7.33h | time left: 9.06h
batch 63300 | examples/s: 27.89 | loss: 0.51621 | time elapsed: 7.34h | time left: 9.04h
batch 63400 | examples/s: 28.08 | loss: 0.51199 | time elapsed: 7.36h | time left: 9.03h
batch 63500 | examples/s: 27.64 | loss: 0.49624 | time elapsed: 7.37h | time left: 9.02h
batch 63600 | examples/s: 27.83 | loss: 0.50498 | time elapsed: 7.38h | time left: 9.01h
batch 63700 | examples/s: 27.99 | loss: 0.50157 | time elapsed: 7.39h | time left: 9.00h
batch 63800 | examples/s: 27.23 | loss: 0.50117 | time elapsed: 7.40h | time left: 8.99h
batch 63900 | examples/s: 24.58 | loss: 0.49884 | time elapsed: 7.41h | time left: 8.97h
batch 64000 | examples/s: 28.18 | loss: 0.51567 | time elapsed: 7.42h | time left: 8.96h
batch 64100 | examples/s: 27.21 | loss: 0.51046 | time elapsed: 7.44h | time left: 8.95h
batch 64200 | examples/s: 28.26 | loss: 0.51040 | time elapsed: 7.45h | time left: 8.94h
batch 64300 | examples/s: 27.78 | loss: 0.49530 | time elapsed: 7.46h | time left: 8.93h
batch 64400 | examples/s: 28.17 | loss: 0.50307 | time elapsed: 7.47h | time left: 8.91h
batch 64500 | examples/s: 27.97 | loss: 0.49128 | time elapsed: 7.48h | time left: 8.90h
batch 64600 | examples/s: 28.06 | loss: 0.51416 | time elapsed: 7.49h | time left: 8.89h
batch 64700 | examples/s: 27.82 | loss: 0.51015 | time elapsed: 7.50h | time left: 8.88h
batch 64800 | examples/s: 27.67 | loss: 0.49862 | time elapsed: 7.52h | time left: 8.87h
batch 64900 | examples/s: 27.43 | loss: 0.50832 | time elapsed: 7.53h | time left: 8.86h
epoch 22 | val loss: 0.52312 | time cost: 19.85 s |
batch 65000 | examples/s: 27.49 | loss: 0.50434 | time elapsed: 7.54h | time left: 8.85h
batch 65100 | examples/s: 28.25 | loss: 0.50238 | time elapsed: 7.56h | time left: 8.84h
batch 65200 | examples/s: 27.99 | loss: 0.50152 | time elapsed: 7.57h | time left: 8.83h
batch 65300 | examples/s: 28.08 | loss: 0.50205 | time elapsed: 7.58h | time left: 8.81h
batch 65400 | examples/s: 27.09 | loss: 0.50376 | time elapsed: 7.59h | time left: 8.80h
batch 65500 | examples/s: 27.28 | loss: 0.50993 | time elapsed: 7.60h | time left: 8.79h
batch 65600 | examples/s: 27.62 | loss: 0.49870 | time elapsed: 7.61h | time left: 8.78h
batch 65700 | examples/s: 27.40 | loss: 0.50898 | time elapsed: 7.62h | time left: 8.77h
batch 65800 | examples/s: 28.05 | loss: 0.51125 | time elapsed: 7.64h | time left: 8.76h
batch 65900 | examples/s: 27.51 | loss: 0.51074 | time elapsed: 7.65h | time left: 8.74h
batch 66000 | examples/s: 28.18 | loss: 0.49348 | time elapsed: 7.66h | time left: 8.73h
batch 66100 | examples/s: 27.40 | loss: 0.50238 | time elapsed: 7.67h | time left: 8.72h
batch 66200 | examples/s: 27.58 | loss: 0.50563 | time elapsed: 7.68h | time left: 8.71h
batch 66300 | examples/s: 27.09 | loss: 0.50596 | time elapsed: 7.69h | time left: 8.70h
batch 66400 | examples/s: 27.61 | loss: 0.49506 | time elapsed: 7.70h | time left: 8.68h
batch 66500 | examples/s: 27.64 | loss: 0.50372 | time elapsed: 7.72h | time left: 8.67h
batch 66600 | examples/s: 24.07 | loss: 0.50514 | time elapsed: 7.73h | time left: 8.66h
batch 66700 | examples/s: 27.95 | loss: 0.49062 | time elapsed: 7.74h | time left: 8.65h
batch 66800 | examples/s: 26.04 | loss: 0.50051 | time elapsed: 7.75h | time left: 8.64h
batch 66900 | examples/s: 27.79 | loss: 0.50977 | time elapsed: 7.76h | time left: 8.63h
batch 67000 | examples/s: 27.69 | loss: 0.51205 | time elapsed: 7.77h | time left: 8.61h
batch 67100 | examples/s: 27.49 | loss: 0.51097 | time elapsed: 7.78h | time left: 8.60h
batch 67200 | examples/s: 27.95 | loss: 0.50514 | time elapsed: 7.80h | time left: 8.59h
batch 67300 | examples/s: 27.50 | loss: 0.50602 | time elapsed: 7.81h | time left: 8.58h
batch 67400 | examples/s: 26.72 | loss: 0.48805 | time elapsed: 7.82h | time left: 8.57h
batch 67500 | examples/s: 25.35 | loss: 0.49288 | time elapsed: 7.83h | time left: 8.56h
batch 67600 | examples/s: 20.67 | loss: 0.51425 | time elapsed: 7.84h | time left: 8.54h
batch 67700 | examples/s: 28.07 | loss: 0.51187 | time elapsed: 7.85h | time left: 8.53h
batch 67800 | examples/s: 27.61 | loss: 0.50645 | time elapsed: 7.87h | time left: 8.52h
epoch 23 | val loss: 0.52154 | time cost: 19.95 s |
batch 67900 | examples/s: 28.10 | loss: 0.51783 | time elapsed: 7.88h | time left: 8.52h
batch 68000 | examples/s: 26.84 | loss: 0.49946 | time elapsed: 7.89h | time left: 8.50h
batch 68100 | examples/s: 27.83 | loss: 0.49931 | time elapsed: 7.91h | time left: 8.49h
batch 68200 | examples/s: 27.59 | loss: 0.50681 | time elapsed: 7.92h | time left: 8.48h
batch 68300 | examples/s: 27.81 | loss: 0.50314 | time elapsed: 7.93h | time left: 8.47h
batch 68400 | examples/s: 27.96 | loss: 0.49870 | time elapsed: 7.94h | time left: 8.46h
batch 68500 | examples/s: 26.46 | loss: 0.50576 | time elapsed: 7.95h | time left: 8.44h
batch 68600 | examples/s: 28.17 | loss: 0.50813 | time elapsed: 7.96h | time left: 8.43h
batch 68700 | examples/s: 27.00 | loss: 0.49065 | time elapsed: 7.97h | time left: 8.42h
batch 68800 | examples/s: 27.25 | loss: 0.48862 | time elapsed: 7.99h | time left: 8.41h
batch 68900 | examples/s: 25.22 | loss: 0.51112 | time elapsed: 8.00h | time left: 8.40h
batch 69000 | examples/s: 27.81 | loss: 0.50804 | time elapsed: 8.01h | time left: 8.39h
batch 69100 | examples/s: 27.92 | loss: 0.49762 | time elapsed: 8.02h | time left: 8.37h
batch 69200 | examples/s: 27.46 | loss: 0.48620 | time elapsed: 8.03h | time left: 8.36h
batch 69300 | examples/s: 26.30 | loss: 0.49338 | time elapsed: 8.04h | time left: 8.35h
batch 69400 | examples/s: 24.70 | loss: 0.50436 | time elapsed: 8.05h | time left: 8.34h
batch 69500 | examples/s: 28.18 | loss: 0.49941 | time elapsed: 8.07h | time left: 8.33h
batch 69600 | examples/s: 27.39 | loss: 0.50359 | time elapsed: 8.08h | time left: 8.32h
batch 69700 | examples/s: 28.00 | loss: 0.50422 | time elapsed: 8.09h | time left: 8.30h
batch 69800 | examples/s: 28.13 | loss: 0.49184 | time elapsed: 8.10h | time left: 8.29h
batch 69900 | examples/s: 25.92 | loss: 0.50200 | time elapsed: 8.11h | time left: 8.28h
batch 70000 | examples/s: 27.87 | loss: 0.50426 | time elapsed: 8.12h | time left: 8.27h
batch 70100 | examples/s: 27.86 | loss: 0.49915 | time elapsed: 8.14h | time left: 8.26h
batch 70200 | examples/s: 27.22 | loss: 0.50910 | time elapsed: 8.15h | time left: 8.25h
batch 70300 | examples/s: 27.58 | loss: 0.50537 | time elapsed: 8.16h | time left: 8.23h
batch 70400 | examples/s: 26.42 | loss: 0.50706 | time elapsed: 8.17h | time left: 8.22h
batch 70500 | examples/s: 27.80 | loss: 0.50250 | time elapsed: 8.18h | time left: 8.21h
batch 70600 | examples/s: 28.15 | loss: 0.50782 | time elapsed: 8.19h | time left: 8.20h
epoch 24 | val loss: 0.51780 | time cost: 20.05 s |
batch 70700 | examples/s: 26.62 | loss: 0.49838 | time elapsed: 8.21h | time left: 8.19h
batch 70800 | examples/s: 26.96 | loss: 0.49024 | time elapsed: 8.22h | time left: 8.18h
batch 70900 | examples/s: 27.19 | loss: 0.49982 | time elapsed: 8.23h | time left: 8.17h
batch 71000 | examples/s: 28.07 | loss: 0.50338 | time elapsed: 8.24h | time left: 8.16h
batch 71100 | examples/s: 27.71 | loss: 0.49110 | time elapsed: 8.26h | time left: 8.15h
batch 71200 | examples/s: 28.00 | loss: 0.50518 | time elapsed: 8.27h | time left: 8.13h
batch 71300 | examples/s: 28.16 | loss: 0.49932 | time elapsed: 8.28h | time left: 8.12h
batch 71400 | examples/s: 27.13 | loss: 0.50218 | time elapsed: 8.29h | time left: 8.11h
batch 71500 | examples/s: 27.37 | loss: 0.49734 | time elapsed: 8.30h | time left: 8.10h
batch 71600 | examples/s: 27.22 | loss: 0.48703 | time elapsed: 8.31h | time left: 8.09h
batch 71700 | examples/s: 26.84 | loss: 0.50931 | time elapsed: 8.32h | time left: 8.08h
batch 71800 | examples/s: 27.85 | loss: 0.50684 | time elapsed: 8.34h | time left: 8.06h
batch 71900 | examples/s: 27.88 | loss: 0.50179 | time elapsed: 8.35h | time left: 8.05h
batch 72000 | examples/s: 28.22 | loss: 0.50144 | time elapsed: 8.36h | time left: 8.04h
batch 72100 | examples/s: 28.01 | loss: 0.51168 | time elapsed: 8.37h | time left: 8.03h
batch 72200 | examples/s: 28.14 | loss: 0.49574 | time elapsed: 8.38h | time left: 8.02h
batch 72300 | examples/s: 28.25 | loss: 0.50817 | time elapsed: 8.39h | time left: 8.00h
batch 72400 | examples/s: 27.73 | loss: 0.51768 | time elapsed: 8.40h | time left: 7.99h
batch 72500 | examples/s: 27.50 | loss: 0.50451 | time elapsed: 8.42h | time left: 7.98h
batch 72600 | examples/s: 27.48 | loss: 0.50070 | time elapsed: 8.43h | time left: 7.97h
batch 72700 | examples/s: 28.18 | loss: 0.49276 | time elapsed: 8.44h | time left: 7.96h
batch 72800 | examples/s: 27.52 | loss: 0.48632 | time elapsed: 8.45h | time left: 7.95h
batch 72900 | examples/s: 25.40 | loss: 0.50674 | time elapsed: 8.46h | time left: 7.93h
batch 73000 | examples/s: 25.55 | loss: 0.49763 | time elapsed: 8.47h | time left: 7.92h
batch 73100 | examples/s: 26.52 | loss: 0.49224 | time elapsed: 8.49h | time left: 7.91h
batch 73200 | examples/s: 27.91 | loss: 0.48977 | time elapsed: 8.50h | time left: 7.90h
batch 73300 | examples/s: 28.00 | loss: 0.50110 | time elapsed: 8.51h | time left: 7.89h
batch 73400 | examples/s: 28.08 | loss: 0.49811 | time elapsed: 8.52h | time left: 7.88h
epoch 25 | val loss: 0.51629 | time cost: 19.69 s |
batch 73500 | examples/s: 26.59 | loss: 0.51107 | time elapsed: 8.54h | time left: 7.87h
batch 73600 | examples/s: 27.16 | loss: 0.51599 | time elapsed: 8.55h | time left: 7.86h
batch 73700 | examples/s: 25.63 | loss: 0.49899 | time elapsed: 8.56h | time left: 7.85h
batch 73800 | examples/s: 27.20 | loss: 0.48828 | time elapsed: 8.57h | time left: 7.83h
batch 73900 | examples/s: 27.76 | loss: 0.49012 | time elapsed: 8.58h | time left: 7.82h
batch 74000 | examples/s: 27.33 | loss: 0.48776 | time elapsed: 8.60h | time left: 7.81h
batch 74100 | examples/s: 28.19 | loss: 0.50526 | time elapsed: 8.61h | time left: 7.80h
batch 74200 | examples/s: 27.62 | loss: 0.50735 | time elapsed: 8.62h | time left: 7.79h
batch 74300 | examples/s: 27.57 | loss: 0.49392 | time elapsed: 8.63h | time left: 7.78h
batch 74400 | examples/s: 27.47 | loss: 0.48743 | time elapsed: 8.64h | time left: 7.76h
batch 74500 | examples/s: 27.96 | loss: 0.50177 | time elapsed: 8.65h | time left: 7.75h
batch 74600 | examples/s: 27.53 | loss: 0.48705 | time elapsed: 8.66h | time left: 7.74h
batch 74700 | examples/s: 25.99 | loss: 0.51796 | time elapsed: 8.68h | time left: 7.73h
batch 74800 | examples/s: 27.77 | loss: 0.49450 | time elapsed: 8.69h | time left: 7.72h
batch 74900 | examples/s: 27.91 | loss: 0.48876 | time elapsed: 8.70h | time left: 7.71h
batch 75000 | examples/s: 27.46 | loss: 0.49827 | time elapsed: 8.71h | time left: 7.69h
batch 75100 | examples/s: 27.63 | loss: 0.49051 | time elapsed: 8.72h | time left: 7.68h
batch 75200 | examples/s: 27.87 | loss: 0.49405 | time elapsed: 8.73h | time left: 7.67h
batch 75300 | examples/s: 25.35 | loss: 0.49358 | time elapsed: 8.74h | time left: 7.66h
batch 75400 | examples/s: 26.90 | loss: 0.50987 | time elapsed: 8.76h | time left: 7.65h
batch 75500 | examples/s: 27.13 | loss: 0.51689 | time elapsed: 8.77h | time left: 7.63h
batch 75600 | examples/s: 28.16 | loss: 0.48528 | time elapsed: 8.78h | time left: 7.62h
batch 75700 | examples/s: 28.18 | loss: 0.50539 | time elapsed: 8.79h | time left: 7.61h
batch 75800 | examples/s: 28.24 | loss: 0.49421 | time elapsed: 8.80h | time left: 7.60h
batch 75900 | examples/s: 28.01 | loss: 0.50131 | time elapsed: 8.81h | time left: 7.59h
batch 76000 | examples/s: 27.90 | loss: 0.48212 | time elapsed: 8.82h | time left: 7.58h
batch 76100 | examples/s: 27.33 | loss: 0.50670 | time elapsed: 8.84h | time left: 7.56h
batch 76200 | examples/s: 26.61 | loss: 0.49538 | time elapsed: 8.85h | time left: 7.55h
epoch 26 | val loss: 0.51531 | time cost: 20.11 s |
batch 76300 | examples/s: 26.83 | loss: 0.48180 | time elapsed: 8.86h | time left: 7.55h
batch 76400 | examples/s: 27.65 | loss: 0.49831 | time elapsed: 8.88h | time left: 7.53h
batch 76500 | examples/s: 26.90 | loss: 0.49925 | time elapsed: 8.89h | time left: 7.52h
batch 76600 | examples/s: 27.05 | loss: 0.48619 | time elapsed: 8.90h | time left: 7.51h
batch 76700 | examples/s: 27.87 | loss: 0.50051 | time elapsed: 8.91h | time left: 7.50h
batch 76800 | examples/s: 25.71 | loss: 0.48696 | time elapsed: 8.92h | time left: 7.49h
batch 76900 | examples/s: 27.87 | loss: 0.49634 | time elapsed: 8.93h | time left: 7.48h
batch 77000 | examples/s: 27.48 | loss: 0.49326 | time elapsed: 8.94h | time left: 7.46h
batch 77100 | examples/s: 27.12 | loss: 0.48171 | time elapsed: 8.96h | time left: 7.45h
batch 77200 | examples/s: 27.65 | loss: 0.50611 | time elapsed: 8.97h | time left: 7.44h
batch 77300 | examples/s: 26.64 | loss: 0.48233 | time elapsed: 8.98h | time left: 7.43h
batch 77400 | examples/s: 27.61 | loss: 0.51027 | time elapsed: 8.99h | time left: 7.42h
batch 77500 | examples/s: 27.42 | loss: 0.49099 | time elapsed: 9.00h | time left: 7.40h
batch 77600 | examples/s: 27.07 | loss: 0.49472 | time elapsed: 9.01h | time left: 7.39h
batch 77700 | examples/s: 27.98 | loss: 0.50521 | time elapsed: 9.02h | time left: 7.38h
batch 77800 | examples/s: 27.92 | loss: 0.49521 | time elapsed: 9.04h | time left: 7.37h
batch 77900 | examples/s: 27.83 | loss: 0.49578 | time elapsed: 9.05h | time left: 7.36h
batch 78000 | examples/s: 28.31 | loss: 0.51046 | time elapsed: 9.06h | time left: 7.35h
batch 78100 | examples/s: 27.25 | loss: 0.48257 | time elapsed: 9.07h | time left: 7.33h
batch 78200 | examples/s: 26.58 | loss: 0.49633 | time elapsed: 9.08h | time left: 7.32h
batch 78300 | examples/s: 28.30 | loss: 0.50435 | time elapsed: 9.09h | time left: 7.31h
batch 78400 | examples/s: 26.88 | loss: 0.50238 | time elapsed: 9.10h | time left: 7.30h
batch 78500 | examples/s: 27.35 | loss: 0.49400 | time elapsed: 9.12h | time left: 7.29h
batch 78600 | examples/s: 27.57 | loss: 0.48905 | time elapsed: 9.13h | time left: 7.28h
batch 78700 | examples/s: 28.05 | loss: 0.49804 | time elapsed: 9.14h | time left: 7.26h
batch 78800 | examples/s: 27.43 | loss: 0.49681 | time elapsed: 9.15h | time left: 7.25h
batch 78900 | examples/s: 27.73 | loss: 0.49716 | time elapsed: 9.16h | time left: 7.24h
batch 79000 | examples/s: 27.40 | loss: 0.51022 | time elapsed: 9.17h | time left: 7.23h
batch 79100 | examples/s: 27.80 | loss: 0.51077 | time elapsed: 9.18h | time left: 7.22h
epoch 27 | val loss: 0.51300 | time cost: 21.83 s |
batch 79200 | examples/s: 27.10 | loss: 0.48352 | time elapsed: 9.20h | time left: 7.21h
batch 79300 | examples/s: 27.65 | loss: 0.51038 | time elapsed: 9.21h | time left: 7.20h
batch 79400 | examples/s: 27.27 | loss: 0.51452 | time elapsed: 9.23h | time left: 7.19h
batch 79500 | examples/s: 27.78 | loss: 0.49126 | time elapsed: 9.24h | time left: 7.17h
batch 79600 | examples/s: 26.23 | loss: 0.51502 | time elapsed: 9.25h | time left: 7.16h
batch 79700 | examples/s: 27.66 | loss: 0.49509 | time elapsed: 9.26h | time left: 7.15h
batch 79800 | examples/s: 27.50 | loss: 0.49898 | time elapsed: 9.27h | time left: 7.14h
batch 79900 | examples/s: 27.79 | loss: 0.49130 | time elapsed: 9.28h | time left: 7.13h
batch 80000 | examples/s: 27.49 | loss: 0.48468 | time elapsed: 9.30h | time left: 7.12h
batch 80100 | examples/s: 26.91 | loss: 0.48672 | time elapsed: 9.31h | time left: 7.10h
batch 80200 | examples/s: 26.93 | loss: 0.50024 | time elapsed: 9.32h | time left: 7.09h
batch 80300 | examples/s: 27.51 | loss: 0.48361 | time elapsed: 9.33h | time left: 7.08h
batch 80400 | examples/s: 26.56 | loss: 0.49906 | time elapsed: 9.34h | time left: 7.07h
batch 80500 | examples/s: 27.94 | loss: 0.48059 | time elapsed: 9.35h | time left: 7.06h
batch 80600 | examples/s: 27.22 | loss: 0.49201 | time elapsed: 9.36h | time left: 7.05h
batch 80700 | examples/s: 26.08 | loss: 0.50390 | time elapsed: 9.38h | time left: 7.03h
batch 80800 | examples/s: 27.28 | loss: 0.49365 | time elapsed: 9.39h | time left: 7.02h
batch 80900 | examples/s: 27.34 | loss: 0.49471 | time elapsed: 9.40h | time left: 7.01h
batch 81000 | examples/s: 27.49 | loss: 0.48348 | time elapsed: 9.41h | time left: 7.00h
batch 81100 | examples/s: 28.14 | loss: 0.48417 | time elapsed: 9.42h | time left: 6.99h
batch 81200 | examples/s: 26.43 | loss: 0.49803 | time elapsed: 9.43h | time left: 6.98h
batch 81300 | examples/s: 27.25 | loss: 0.49014 | time elapsed: 9.44h | time left: 6.96h
batch 81400 | examples/s: 26.75 | loss: 0.49510 | time elapsed: 9.46h | time left: 6.95h
batch 81500 | examples/s: 26.91 | loss: 0.50019 | time elapsed: 9.47h | time left: 6.94h
batch 81600 | examples/s: 27.81 | loss: 0.49609 | time elapsed: 9.48h | time left: 6.93h
batch 81700 | examples/s: 28.13 | loss: 0.50139 | time elapsed: 9.49h | time left: 6.92h
batch 81800 | examples/s: 27.61 | loss: 0.49472 | time elapsed: 9.50h | time left: 6.91h
batch 81900 | examples/s: 27.86 | loss: 0.49450 | time elapsed: 9.51h | time left: 6.89h
epoch 28 | val loss: 0.51645 | time cost: 19.77 s |
batch 82000 | examples/s: 27.89 | loss: 0.47690 | time elapsed: 9.53h | time left: 6.89h
batch 82100 | examples/s: 27.91 | loss: 0.49721 | time elapsed: 9.54h | time left: 6.87h
batch 82200 | examples/s: 28.12 | loss: 0.49315 | time elapsed: 9.55h | time left: 6.86h
batch 82300 | examples/s: 23.44 | loss: 0.47554 | time elapsed: 9.57h | time left: 6.85h
batch 82400 | examples/s: 26.74 | loss: 0.50656 | time elapsed: 9.58h | time left: 6.84h
batch 82500 | examples/s: 25.83 | loss: 0.48629 | time elapsed: 9.59h | time left: 6.83h
batch 82600 | examples/s: 27.87 | loss: 0.50116 | time elapsed: 9.60h | time left: 6.82h
batch 82700 | examples/s: 28.21 | loss: 0.49743 | time elapsed: 9.61h | time left: 6.80h
batch 82800 | examples/s: 28.41 | loss: 0.48225 | time elapsed: 9.62h | time left: 6.79h
batch 82900 | examples/s: 28.37 | loss: 0.48196 | time elapsed: 9.63h | time left: 6.78h
batch 83000 | examples/s: 27.39 | loss: 0.49730 | time elapsed: 9.65h | time left: 6.77h
batch 83100 | examples/s: 27.88 | loss: 0.48743 | time elapsed: 9.66h | time left: 6.76h
batch 83200 | examples/s: 27.41 | loss: 0.49716 | time elapsed: 9.67h | time left: 6.75h
batch 83300 | examples/s: 27.61 | loss: 0.48792 | time elapsed: 9.68h | time left: 6.73h
batch 83400 | examples/s: 27.05 | loss: 0.50462 | time elapsed: 9.69h | time left: 6.72h
batch 83500 | examples/s: 28.00 | loss: 0.50395 | time elapsed: 9.70h | time left: 6.71h
batch 83600 | examples/s: 26.98 | loss: 0.48040 | time elapsed: 9.71h | time left: 6.70h
batch 83700 | examples/s: 28.03 | loss: 0.49116 | time elapsed: 9.73h | time left: 6.69h
batch 83800 | examples/s: 28.07 | loss: 0.49331 | time elapsed: 9.74h | time left: 6.68h
batch 83900 | examples/s: 23.85 | loss: 0.49528 | time elapsed: 9.75h | time left: 6.66h
batch 84000 | examples/s: 27.83 | loss: 0.49210 | time elapsed: 9.76h | time left: 6.65h
batch 84100 | examples/s: 27.44 | loss: 0.49372 | time elapsed: 9.77h | time left: 6.64h
batch 84200 | examples/s: 25.17 | loss: 0.49983 | time elapsed: 9.78h | time left: 6.63h
batch 84300 | examples/s: 27.85 | loss: 0.50289 | time elapsed: 9.79h | time left: 6.62h
batch 84400 | examples/s: 27.28 | loss: 0.49888 | time elapsed: 9.81h | time left: 6.60h
batch 84500 | examples/s: 27.40 | loss: 0.50275 | time elapsed: 9.82h | time left: 6.59h
batch 84600 | examples/s: 27.79 | loss: 0.50783 | time elapsed: 9.83h | time left: 6.58h
batch 84700 | examples/s: 28.14 | loss: 0.49801 | time elapsed: 9.84h | time left: 6.57h
epoch 29 | val loss: 0.51276 | time cost: 19.72 s |
batch 84800 | examples/s: 28.17 | loss: 0.47646 | time elapsed: 9.86h | time left: 6.56h
batch 84900 | examples/s: 27.36 | loss: 0.49034 | time elapsed: 9.87h | time left: 6.55h
batch 85000 | examples/s: 27.36 | loss: 0.49094 | time elapsed: 9.88h | time left: 6.54h
batch 85100 | examples/s: 26.29 | loss: 0.47625 | time elapsed: 9.89h | time left: 6.53h
batch 85200 | examples/s: 27.50 | loss: 0.48870 | time elapsed: 9.90h | time left: 6.52h
batch 85300 | examples/s: 28.06 | loss: 0.48215 | time elapsed: 9.92h | time left: 6.50h
batch 85400 | examples/s: 27.82 | loss: 0.48353 | time elapsed: 9.93h | time left: 6.49h
batch 85500 | examples/s: 27.77 | loss: 0.48742 | time elapsed: 9.94h | time left: 6.48h
batch 85600 | examples/s: 26.95 | loss: 0.47780 | time elapsed: 9.95h | time left: 6.47h
batch 85700 | examples/s: 27.17 | loss: 0.48324 | time elapsed: 9.96h | time left: 6.46h
batch 85800 | examples/s: 28.03 | loss: 0.47876 | time elapsed: 9.97h | time left: 6.44h
batch 85900 | examples/s: 27.48 | loss: 0.48687 | time elapsed: 9.98h | time left: 6.43h
batch 86000 | examples/s: 27.08 | loss: 0.47891 | time elapsed: 10.00h | time left: 6.42h
batch 86100 | examples/s: 28.01 | loss: 0.48201 | time elapsed: 10.01h | time left: 6.41h
batch 86200 | examples/s: 27.04 | loss: 0.48998 | time elapsed: 10.02h | time left: 6.40h
batch 86300 | examples/s: 27.93 | loss: 0.49069 | time elapsed: 10.03h | time left: 6.39h
batch 86400 | examples/s: 28.10 | loss: 0.48775 | time elapsed: 10.04h | time left: 6.37h
batch 86500 | examples/s: 26.26 | loss: 0.47425 | time elapsed: 10.05h | time left: 6.36h
batch 86600 | examples/s: 27.82 | loss: 0.48543 | time elapsed: 10.06h | time left: 6.35h
batch 86700 | examples/s: 25.31 | loss: 0.48459 | time elapsed: 10.08h | time left: 6.34h
batch 86800 | examples/s: 27.82 | loss: 0.49360 | time elapsed: 10.09h | time left: 6.33h
batch 86900 | examples/s: 27.42 | loss: 0.48103 | time elapsed: 10.10h | time left: 6.32h
batch 87000 | examples/s: 25.41 | loss: 0.47582 | time elapsed: 10.11h | time left: 6.30h
batch 87100 | examples/s: 25.26 | loss: 0.48982 | time elapsed: 10.12h | time left: 6.29h
batch 87200 | examples/s: 27.29 | loss: 0.47619 | time elapsed: 10.13h | time left: 6.28h
batch 87300 | examples/s: 27.15 | loss: 0.48499 | time elapsed: 10.15h | time left: 6.27h
batch 87400 | examples/s: 28.00 | loss: 0.47627 | time elapsed: 10.16h | time left: 6.26h
batch 87500 | examples/s: 27.97 | loss: 0.47668 | time elapsed: 10.17h | time left: 6.25h
epoch 30 | val loss: 0.49985 | time cost: 20.02 s |
batch 87600 | examples/s: 27.43 | loss: 0.46559 | time elapsed: 10.19h | time left: 6.24h
batch 87700 | examples/s: 27.97 | loss: 0.48142 | time elapsed: 10.20h | time left: 6.23h
batch 87800 | examples/s: 26.58 | loss: 0.48139 | time elapsed: 10.21h | time left: 6.21h
batch 87900 | examples/s: 27.69 | loss: 0.48124 | time elapsed: 10.22h | time left: 6.20h
batch 88000 | examples/s: 26.69 | loss: 0.47324 | time elapsed: 10.23h | time left: 6.19h
batch 88100 | examples/s: 23.69 | loss: 0.48106 | time elapsed: 10.24h | time left: 6.18h
batch 88200 | examples/s: 27.19 | loss: 0.47344 | time elapsed: 10.26h | time left: 6.17h
batch 88300 | examples/s: 27.35 | loss: 0.47115 | time elapsed: 10.27h | time left: 6.16h
batch 88400 | examples/s: 27.28 | loss: 0.46607 | time elapsed: 10.28h | time left: 6.14h
batch 88500 | examples/s: 27.98 | loss: 0.48472 | time elapsed: 10.29h | time left: 6.13h
batch 88600 | examples/s: 26.96 | loss: 0.47592 | time elapsed: 10.30h | time left: 6.12h
batch 88700 | examples/s: 26.92 | loss: 0.47737 | time elapsed: 10.31h | time left: 6.11h
batch 88800 | examples/s: 27.61 | loss: 0.48403 | time elapsed: 10.32h | time left: 6.10h
batch 88900 | examples/s: 27.44 | loss: 0.48307 | time elapsed: 10.34h | time left: 6.09h
batch 89000 | examples/s: 27.88 | loss: 0.48284 | time elapsed: 10.35h | time left: 6.07h
batch 89100 | examples/s: 27.94 | loss: 0.47742 | time elapsed: 10.36h | time left: 6.06h
batch 89200 | examples/s: 27.82 | loss: 0.49110 | time elapsed: 10.37h | time left: 6.05h
batch 89300 | examples/s: 28.20 | loss: 0.47274 | time elapsed: 10.38h | time left: 6.04h
batch 89400 | examples/s: 27.50 | loss: 0.47785 | time elapsed: 10.39h | time left: 6.03h
batch 89500 | examples/s: 27.71 | loss: 0.47780 | time elapsed: 10.40h | time left: 6.02h
batch 89600 | examples/s: 27.77 | loss: 0.46933 | time elapsed: 10.42h | time left: 6.00h
batch 89700 | examples/s: 27.72 | loss: 0.47631 | time elapsed: 10.43h | time left: 5.99h
batch 89800 | examples/s: 26.48 | loss: 0.48724 | time elapsed: 10.44h | time left: 5.98h
batch 89900 | examples/s: 27.28 | loss: 0.47251 | time elapsed: 10.45h | time left: 5.97h
batch 90000 | examples/s: 27.45 | loss: 0.46492 | time elapsed: 10.46h | time left: 5.96h
batch 90100 | examples/s: 28.45 | loss: 0.47660 | time elapsed: 10.47h | time left: 5.95h
batch 90200 | examples/s: 27.99 | loss: 0.48176 | time elapsed: 10.48h | time left: 5.93h
batch 90300 | examples/s: 27.40 | loss: 0.47020 | time elapsed: 10.50h | time left: 5.92h
batch 90400 | examples/s: 27.06 | loss: 0.46340 | time elapsed: 10.51h | time left: 5.91h
epoch 31 | val loss: 0.49810 | time cost: 20.08 s |
batch 90500 | examples/s: 27.78 | loss: 0.47370 | time elapsed: 10.53h | time left: 5.90h
batch 90600 | examples/s: 27.48 | loss: 0.47429 | time elapsed: 10.54h | time left: 5.89h
batch 90700 | examples/s: 27.94 | loss: 0.47107 | time elapsed: 10.55h | time left: 5.88h
batch 90800 | examples/s: 27.54 | loss: 0.47115 | time elapsed: 10.56h | time left: 5.87h
batch 90900 | examples/s: 27.53 | loss: 0.48065 | time elapsed: 10.57h | time left: 5.86h
batch 91000 | examples/s: 27.16 | loss: 0.47017 | time elapsed: 10.58h | time left: 5.84h
batch 91100 | examples/s: 27.76 | loss: 0.47514 | time elapsed: 10.59h | time left: 5.83h
batch 91200 | examples/s: 27.63 | loss: 0.46688 | time elapsed: 10.61h | time left: 5.82h
batch 91300 | examples/s: 28.10 | loss: 0.48519 | time elapsed: 10.62h | time left: 5.81h
batch 91400 | examples/s: 27.02 | loss: 0.46663 | time elapsed: 10.63h | time left: 5.80h
batch 91500 | examples/s: 27.42 | loss: 0.47554 | time elapsed: 10.64h | time left: 5.79h
batch 91600 | examples/s: 26.97 | loss: 0.47301 | time elapsed: 10.65h | time left: 5.77h
batch 91700 | examples/s: 27.84 | loss: 0.48087 | time elapsed: 10.66h | time left: 5.76h
batch 91800 | examples/s: 25.42 | loss: 0.47853 | time elapsed: 10.67h | time left: 5.75h
batch 91900 | examples/s: 27.32 | loss: 0.47325 | time elapsed: 10.69h | time left: 5.74h
batch 92000 | examples/s: 28.29 | loss: 0.47273 | time elapsed: 10.70h | time left: 5.73h
batch 92100 | examples/s: 28.01 | loss: 0.47478 | time elapsed: 10.71h | time left: 5.72h
batch 92200 | examples/s: 28.10 | loss: 0.48897 | time elapsed: 10.72h | time left: 5.70h
batch 92300 | examples/s: 27.09 | loss: 0.46879 | time elapsed: 10.73h | time left: 5.69h
batch 92400 | examples/s: 27.74 | loss: 0.48576 | time elapsed: 10.74h | time left: 5.68h
batch 92500 | examples/s: 27.80 | loss: 0.47108 | time elapsed: 10.75h | time left: 5.67h
batch 92600 | examples/s: 26.48 | loss: 0.46761 | time elapsed: 10.77h | time left: 5.66h
batch 92700 | examples/s: 26.31 | loss: 0.47037 | time elapsed: 10.78h | time left: 5.64h
batch 92800 | examples/s: 27.94 | loss: 0.47134 | time elapsed: 10.79h | time left: 5.63h
batch 92900 | examples/s: 27.78 | loss: 0.47073 | time elapsed: 10.80h | time left: 5.62h
batch 93000 | examples/s: 27.94 | loss: 0.47079 | time elapsed: 10.81h | time left: 5.61h
batch 93100 | examples/s: 27.50 | loss: 0.47411 | time elapsed: 10.82h | time left: 5.60h
batch 93200 | examples/s: 26.98 | loss: 0.47825 | time elapsed: 10.83h | time left: 5.59h
epoch 32 | val loss: 0.49854 | time cost: 20.26 s |
batch 93300 | examples/s: 26.59 | loss: 0.47125 | time elapsed: 10.85h | time left: 5.58h
batch 93400 | examples/s: 26.54 | loss: 0.47828 | time elapsed: 10.86h | time left: 5.57h
batch 93500 | examples/s: 27.86 | loss: 0.47765 | time elapsed: 10.88h | time left: 5.55h
batch 93600 | examples/s: 27.04 | loss: 0.46883 | time elapsed: 10.89h | time left: 5.54h
batch 93700 | examples/s: 28.28 | loss: 0.46121 | time elapsed: 10.90h | time left: 5.53h
batch 93800 | examples/s: 27.19 | loss: 0.46623 | time elapsed: 10.91h | time left: 5.52h
batch 93900 | examples/s: 27.07 | loss: 0.47388 | time elapsed: 10.92h | time left: 5.51h
batch 94000 | examples/s: 27.80 | loss: 0.48066 | time elapsed: 10.93h | time left: 5.50h
batch 94100 | examples/s: 28.08 | loss: 0.46797 | time elapsed: 10.94h | time left: 5.48h
batch 94200 | examples/s: 26.90 | loss: 0.47066 | time elapsed: 10.96h | time left: 5.47h
batch 94300 | examples/s: 27.49 | loss: 0.46261 | time elapsed: 10.97h | time left: 5.46h
batch 94400 | examples/s: 27.64 | loss: 0.47614 | time elapsed: 10.98h | time left: 5.45h
batch 94500 | examples/s: 27.80 | loss: 0.47255 | time elapsed: 10.99h | time left: 5.44h
batch 94600 | examples/s: 28.03 | loss: 0.46590 | time elapsed: 11.00h | time left: 5.43h
batch 94700 | examples/s: 27.22 | loss: 0.47758 | time elapsed: 11.01h | time left: 5.41h
batch 94800 | examples/s: 26.43 | loss: 0.48573 | time elapsed: 11.02h | time left: 5.40h
batch 94900 | examples/s: 27.89 | loss: 0.46973 | time elapsed: 11.04h | time left: 5.39h
batch 95000 | examples/s: 26.07 | loss: 0.47318 | time elapsed: 11.05h | time left: 5.38h
batch 95100 | examples/s: 26.59 | loss: 0.48095 | time elapsed: 11.06h | time left: 5.37h
batch 95200 | examples/s: 27.63 | loss: 0.46001 | time elapsed: 11.07h | time left: 5.36h
batch 95300 | examples/s: 26.84 | loss: 0.46978 | time elapsed: 11.08h | time left: 5.34h
batch 95400 | examples/s: 26.83 | loss: 0.47943 | time elapsed: 11.09h | time left: 5.33h
batch 95500 | examples/s: 27.69 | loss: 0.46526 | time elapsed: 11.11h | time left: 5.32h
batch 95600 | examples/s: 27.83 | loss: 0.46488 | time elapsed: 11.12h | time left: 5.31h
batch 95700 | examples/s: 28.02 | loss: 0.47610 | time elapsed: 11.13h | time left: 5.30h
batch 95800 | examples/s: 28.04 | loss: 0.48370 | time elapsed: 11.14h | time left: 5.29h
batch 95900 | examples/s: 27.66 | loss: 0.47842 | time elapsed: 11.15h | time left: 5.27h
batch 96000 | examples/s: 27.10 | loss: 0.46848 | time elapsed: 11.16h | time left: 5.26h
epoch 33 | val loss: 0.49806 | time cost: 19.59 s |