|
| 1 | +#ifndef COMPUTATION_LAYERNORM_FUSE_H |
| 2 | +#define COMPUTATION_LAYERNORM_FUSE_H |
| 3 | + |
| 4 | +#include "../graph.h" |
| 5 | +#include "computation/operators/layernorm.h" |
| 6 | +#include "computation/operators/reduce.h" |
| 7 | +#include "computation/operators/simple_binary.h" |
| 8 | +#include "computation/operators/simple_unary.h" |
| 9 | +#include "computation/pass/converter.h" |
| 10 | + |
| 11 | +namespace refactor::computation { |
| 12 | + |
| 13 | + class LayernormFuse : public Converter { |
| 14 | + public: |
| 15 | + virtual bool execute(const std::shared_ptr<GraphMutant> &g) const override { |
| 16 | + auto nodesList = g->internal().nodes(); |
| 17 | + size_t count = 0; |
| 18 | + for (auto opMatch : nodesList) { |
| 19 | + if (opMatch->info().op == nullptr) { |
| 20 | + continue; |
| 21 | + } |
| 22 | + size_t optype = opMatch->info().op->opTypeId(); |
| 23 | + if (optype != SimpleBinary::typeId(refactor::kernel::SimpleBinaryType::Add)) { |
| 24 | + continue; |
| 25 | + } |
| 26 | + if (opMatch->successors().size() < 2) { |
| 27 | + continue; |
| 28 | + } |
| 29 | + auto input = opMatch->inputs()[0]->info().tensor; |
| 30 | + auto targets = opMatch->outputs()[0]->targets(); |
| 31 | + auto ReduceMeanOp = *targets.begin(); |
| 32 | + auto SubOp1 = *(std::next(targets.begin())); |
| 33 | + if (ReduceMeanOp == nullptr || SubOp1 == nullptr || |
| 34 | + ReduceMeanOp->info().op->opTypeId() != Reduce::typeId(refactor::kernel::ReduceType::Mean) || |
| 35 | + SubOp1->info().op->opTypeId() != SimpleBinary::typeId(refactor::kernel::SimpleBinaryType::Sub)) { |
| 36 | + continue; |
| 37 | + } |
| 38 | + auto reduceOp = dynamic_cast<Reduce *>(ReduceMeanOp->info().op.get()); |
| 39 | + auto axes = reduceOp->axes; |
| 40 | + if (axes.size() != 1) { |
| 41 | + continue; |
| 42 | + } |
| 43 | + auto keepDims = reduceOp->keepDims; |
| 44 | + if (ReduceMeanOp->successors().size() != 1 || *(ReduceMeanOp->outputs()[0]->targets().begin()) != SubOp1) { |
| 45 | + continue; |
| 46 | + } |
| 47 | + if (SubOp1->successors().size() != 2) { |
| 48 | + continue; |
| 49 | + } |
| 50 | + auto targets1 = SubOp1->outputs()[0]->targets(); |
| 51 | + auto PowOp = *targets1.begin(); |
| 52 | + auto DivOp = *(std::next(targets1.begin())); |
| 53 | + if (PowOp == nullptr || DivOp == nullptr || |
| 54 | + PowOp->info().op->opTypeId() != SimpleBinary::typeId(refactor::kernel::SimpleBinaryType::Pow) || |
| 55 | + DivOp->info().op->opTypeId() != SimpleBinary::typeId(refactor::kernel::SimpleBinaryType::Div)) { |
| 56 | + continue; |
| 57 | + } |
| 58 | + if (PowOp->successors().size() != 1 || DivOp->successors().size() != 1) { |
| 59 | + continue; |
| 60 | + } |
| 61 | + auto ReduceMeanOp1 = *(PowOp->outputs()[0]->targets().begin()); |
| 62 | + auto MulOp = *(DivOp->outputs()[0]->targets().begin()); |
| 63 | + if (ReduceMeanOp1 == nullptr || MulOp == nullptr || |
| 64 | + ReduceMeanOp1->info().op->opTypeId() != Reduce::typeId(refactor::kernel::ReduceType::Mean) || |
| 65 | + MulOp->info().op->opTypeId() != SimpleBinary::typeId(refactor::kernel::SimpleBinaryType::Mul)) { |
| 66 | + continue; |
| 67 | + } |
| 68 | + auto reduce1Op = dynamic_cast<Reduce *>(ReduceMeanOp1->info().op.get()); |
| 69 | + auto axes1 = reduce1Op->axes; |
| 70 | + if (axes != axes1) { |
| 71 | + continue; |
| 72 | + } |
| 73 | + if (auto keepDims1 = reduce1Op->keepDims; keepDims != keepDims1) { |
| 74 | + continue; |
| 75 | + } |
| 76 | + if (MulOp->successors().size() != 1 || ReduceMeanOp1->successors().size() != 1) { |
| 77 | + continue; |
| 78 | + } |
| 79 | + auto AddOrSqrtOp = *(ReduceMeanOp1->outputs()[0]->targets().begin()); |
| 80 | + auto AddOp2 = *(MulOp->outputs()[0]->targets().begin()); |
| 81 | + if (AddOrSqrtOp == nullptr || AddOp2 == nullptr || |
| 82 | + AddOp2->info().op->opTypeId() != SimpleBinary::typeId(refactor::kernel::SimpleBinaryType::Add)) { |
| 83 | + continue; |
| 84 | + } |
| 85 | + if (AddOrSqrtOp->successors().size() != 1) { |
| 86 | + continue; |
| 87 | + } |
| 88 | + float epsilon = 0.0; |
| 89 | + if (auto AddOp = AddOrSqrtOp; AddOp->info().op->opTypeId() == SimpleBinary::typeId(refactor::kernel::SimpleBinaryType::Add)) { |
| 90 | + auto SqrtOp = *(AddOp->outputs()[0]->targets().begin()); |
| 91 | + if (SqrtOp == nullptr || SqrtOp->info().op->opTypeId() != SimpleUnary::typeId(refactor::kernel::SimpleUnaryType::Sqrt)) { |
| 92 | + continue; |
| 93 | + } |
| 94 | + if (SqrtOp->successors().size() != 1 || *(SqrtOp->outputs()[0]->targets().begin()) != DivOp) { |
| 95 | + continue; |
| 96 | + } |
| 97 | + // start replace with LayernormOp |
| 98 | + if (auto t = AddOp->inputs()[1]->info().tensor->data; t) { |
| 99 | + epsilon = *t->get<float>(); |
| 100 | + } |
| 101 | + } else if (auto SqrtOp = AddOrSqrtOp; SqrtOp->info().op->opTypeId() == SimpleUnary::typeId(refactor::kernel::SimpleUnaryType::Sqrt)) { |
| 102 | + if (*(SqrtOp->outputs()[0]->targets().begin()) != DivOp) { |
| 103 | + continue; |
| 104 | + } |
| 105 | + } else { |
| 106 | + continue; |
| 107 | + } |
| 108 | + |
| 109 | + int axis = axes[0]; |
| 110 | + auto layernormOp = g->internal().pushNode( |
| 111 | + {std::make_unique<LayerNormalization>(epsilon, axis), fmt::format("Layernorm_{}", count)}, |
| 112 | + {g->internal().shareEdge({Tensor::share(input->dataType, input->shape), fmt::format("Layernorm_{}_out", count)})}); |
| 113 | + layernormOp->connect(0, opMatch->outputs()[0]); |
| 114 | + layernormOp->connect(1, MulOp->inputs()[1]); |
| 115 | + layernormOp->connect(2, AddOp2->inputs()[1]); |
| 116 | + if (AddOp2->outputs()[0]->targets().size() == 0) {//global output |
| 117 | + g->internal().replaceOutput(AddOp2->outputs()[0], layernormOp->outputs()[0]); |
| 118 | + } else { |
| 119 | + for (auto node : AddOp2->outputs()[0]->targets()) { |
| 120 | + auto it = std::find(node->inputs().begin(), node->inputs().end(), AddOp2->outputs()[0]); |
| 121 | + node->reconnect(node->inputs()[std::distance(node->inputs().begin(), it)], layernormOp->outputs()[0]); |
| 122 | + } |
| 123 | + } |
| 124 | + count++; |
| 125 | + g->internal().cleanup(); |
| 126 | + } |
| 127 | + return true; |
| 128 | + }; |
| 129 | + }; |
| 130 | + |
| 131 | + |
| 132 | +}// namespace refactor::computation |
| 133 | + |
| 134 | +#endif// COMPUTATION_LAYERNORM_FUSE_H |
0 commit comments