@@ -140,7 +140,7 @@ def beta(a, b, size=None):
140140 """
141141
142142 if not use_origin_backend (a ):
143- if dpnp .is_cuda_backend ():
143+ if dpnp .is_cuda_backend (): # pragma: no cover
144144 raise NotImplementedError (
145145 "Running on CUDA is currently not supported"
146146 )
@@ -191,7 +191,7 @@ def binomial(n, p, size=None):
191191 """
192192
193193 if not use_origin_backend (n ):
194- if dpnp .is_cuda_backend ():
194+ if dpnp .is_cuda_backend (): # pragma: no cover
195195 raise NotImplementedError (
196196 "Running on CUDA is currently not supported"
197197 )
@@ -248,7 +248,7 @@ def chisquare(df, size=None):
248248 """
249249
250250 if not use_origin_backend (df ):
251- if dpnp .is_cuda_backend ():
251+ if dpnp .is_cuda_backend (): # pragma: no cover
252252 raise NotImplementedError (
253253 "Running on CUDA is currently not supported"
254254 )
@@ -321,7 +321,7 @@ def exponential(scale=1.0, size=None):
321321 """
322322
323323 if not use_origin_backend (scale ):
324- if dpnp .is_cuda_backend ():
324+ if dpnp .is_cuda_backend (): # pragma: no cover
325325 raise NotImplementedError (
326326 "Running on CUDA is currently not supported"
327327 )
@@ -358,7 +358,7 @@ def f(dfnum, dfden, size=None):
358358 """
359359
360360 if not use_origin_backend (dfnum ):
361- if dpnp .is_cuda_backend ():
361+ if dpnp .is_cuda_backend (): # pragma: no cover
362362 raise NotImplementedError (
363363 "Running on CUDA is currently not supported"
364364 )
@@ -401,7 +401,7 @@ def gamma(shape, scale=1.0, size=None):
401401 """
402402
403403 if not use_origin_backend (scale ):
404- if dpnp .is_cuda_backend ():
404+ if dpnp .is_cuda_backend (): # pragma: no cover
405405 raise NotImplementedError (
406406 "Running on CUDA is currently not supported"
407407 )
@@ -444,7 +444,7 @@ def geometric(p, size=None):
444444 """
445445
446446 if not use_origin_backend (p ):
447- if dpnp .is_cuda_backend ():
447+ if dpnp .is_cuda_backend (): # pragma: no cover
448448 raise NotImplementedError (
449449 "Running on CUDA is currently not supported"
450450 )
@@ -483,7 +483,7 @@ def gumbel(loc=0.0, scale=1.0, size=None):
483483 """
484484
485485 if not use_origin_backend (loc ):
486- if dpnp .is_cuda_backend ():
486+ if dpnp .is_cuda_backend (): # pragma: no cover
487487 raise NotImplementedError (
488488 "Running on CUDA is currently not supported"
489489 )
@@ -526,7 +526,7 @@ def hypergeometric(ngood, nbad, nsample, size=None):
526526 """
527527
528528 if not use_origin_backend (ngood ):
529- if dpnp .is_cuda_backend ():
529+ if dpnp .is_cuda_backend (): # pragma: no cover
530530 raise NotImplementedError (
531531 "Running on CUDA is currently not supported"
532532 )
@@ -579,7 +579,7 @@ def laplace(loc=0.0, scale=1.0, size=None):
579579 """
580580
581581 if not use_origin_backend (loc ):
582- if dpnp .is_cuda_backend ():
582+ if dpnp .is_cuda_backend (): # pragma: no cover
583583 raise NotImplementedError (
584584 "Running on CUDA is currently not supported"
585585 )
@@ -618,7 +618,7 @@ def logistic(loc=0.0, scale=1.0, size=None):
618618 """
619619
620620 if not use_origin_backend (loc ):
621- if dpnp .is_cuda_backend ():
621+ if dpnp .is_cuda_backend (): # pragma: no cover
622622 raise NotImplementedError (
623623 "Running on CUDA is currently not supported"
624624 )
@@ -664,7 +664,7 @@ def lognormal(mean=0.0, sigma=1.0, size=None):
664664 """
665665
666666 if not use_origin_backend (mean ):
667- if dpnp .is_cuda_backend ():
667+ if dpnp .is_cuda_backend (): # pragma: no cover
668668 raise NotImplementedError (
669669 "Running on CUDA is currently not supported"
670670 )
@@ -726,7 +726,7 @@ def multinomial(n, pvals, size=None):
726726 pvals_sum = sum (pvals )
727727 pvals_desc = dpnp .get_dpnp_descriptor (dpnp .array (pvals ))
728728 d = len (pvals )
729- if dpnp .is_cuda_backend (pvals_desc .get_array ()):
729+ if dpnp .is_cuda_backend (pvals_desc .get_array ()): # pragma: no cover
730730 raise NotImplementedError (
731731 "Running on CUDA is currently not supported"
732732 )
@@ -780,7 +780,7 @@ def multivariate_normal(mean, cov, size=None, check_valid="warn", tol=1e-8):
780780 cov_ = dpnp .get_dpnp_descriptor (dpnp .array (cov , dtype = dpnp .float64 ))
781781 if dpnp .is_cuda_backend (mean_ .get_array ()) or dpnp .is_cuda_backend (
782782 cov_ .get_array ()
783- ):
783+ ): # pragma: no cover
784784 raise NotImplementedError (
785785 "Running on CUDA is currently not supported"
786786 )
@@ -839,7 +839,7 @@ def negative_binomial(n, p, size=None):
839839 """
840840
841841 if not use_origin_backend (n ):
842- if dpnp .is_cuda_backend ():
842+ if dpnp .is_cuda_backend (): # pragma: no cover
843843 raise NotImplementedError (
844844 "Running on CUDA is currently not supported"
845845 )
@@ -929,7 +929,7 @@ def noncentral_chisquare(df, nonc, size=None):
929929 """
930930
931931 if not use_origin_backend (df ):
932- if dpnp .is_cuda_backend ():
932+ if dpnp .is_cuda_backend (): # pragma: no cover
933933 raise NotImplementedError (
934934 "Running on CUDA is currently not supported"
935935 )
@@ -988,7 +988,7 @@ def pareto(a, size=None):
988988 """
989989
990990 if not use_origin_backend (a ):
991- if dpnp .is_cuda_backend ():
991+ if dpnp .is_cuda_backend (): # pragma: no cover
992992 raise NotImplementedError (
993993 "Running on CUDA is currently not supported"
994994 )
@@ -1062,7 +1062,7 @@ def poisson(lam=1.0, size=None):
10621062 """
10631063
10641064 if not use_origin_backend (lam ):
1065- if dpnp .is_cuda_backend ():
1065+ if dpnp .is_cuda_backend (): # pragma: no cover
10661066 raise NotImplementedError (
10671067 "Running on CUDA is currently not supported"
10681068 )
@@ -1102,7 +1102,7 @@ def power(a, size=None):
11021102 """
11031103
11041104 if not use_origin_backend (a ):
1105- if dpnp .is_cuda_backend ():
1105+ if dpnp .is_cuda_backend (): # pragma: no cover
11061106 raise NotImplementedError (
11071107 "Running on CUDA is currently not supported"
11081108 )
@@ -1524,7 +1524,7 @@ def rayleigh(scale=1.0, size=None):
15241524 """
15251525
15261526 if not use_origin_backend (scale ):
1527- if dpnp .is_cuda_backend ():
1527+ if dpnp .is_cuda_backend (): # pragma: no cover
15281528 raise NotImplementedError (
15291529 "Running on CUDA is currently not supported"
15301530 )
@@ -1606,7 +1606,7 @@ def shuffle(x1):
16061606 x1_desc = dpnp .get_dpnp_descriptor (x1 , copy_when_strides = False )
16071607 if x1_desc :
16081608
1609- if dpnp .is_cuda_backend (x1_desc .get_array ()):
1609+ if dpnp .is_cuda_backend (x1_desc .get_array ()): # pragma: no cover
16101610 raise NotImplementedError (
16111611 "Running on CUDA is currently not supported"
16121612 )
@@ -1655,7 +1655,7 @@ def seed(seed=None, device=None, sycl_queue=None):
16551655 )
16561656
16571657 if not use_origin_backend (seed ):
1658- if dpnp .is_cuda_backend ():
1658+ if dpnp .is_cuda_backend (): # pragma: no cover
16591659 raise NotImplementedError (
16601660 "Running on CUDA is currently not supported"
16611661 )
@@ -1700,7 +1700,7 @@ def standard_cauchy(size=None):
17001700 """
17011701
17021702 if not use_origin_backend (size ):
1703- if dpnp .is_cuda_backend ():
1703+ if dpnp .is_cuda_backend (): # pragma: no cover
17041704 raise NotImplementedError (
17051705 "Running on CUDA is currently not supported"
17061706 )
@@ -1729,7 +1729,7 @@ def standard_exponential(size=None):
17291729 """
17301730
17311731 if not use_origin_backend (size ):
1732- if dpnp .is_cuda_backend ():
1732+ if dpnp .is_cuda_backend (): # pragma: no cover
17331733 raise NotImplementedError (
17341734 "Running on CUDA is currently not supported"
17351735 )
@@ -1761,7 +1761,7 @@ def standard_gamma(shape, size=None):
17611761 """
17621762
17631763 if not use_origin_backend (shape ):
1764- if dpnp .is_cuda_backend ():
1764+ if dpnp .is_cuda_backend (): # pragma: no cover
17651765 raise NotImplementedError (
17661766 "Running on CUDA is currently not supported"
17671767 )
@@ -1844,7 +1844,7 @@ def standard_t(df, size=None):
18441844 """
18451845
18461846 if not use_origin_backend (df ):
1847- if dpnp .is_cuda_backend ():
1847+ if dpnp .is_cuda_backend (): # pragma: no cover
18481848 raise NotImplementedError (
18491849 "Running on CUDA is currently not supported"
18501850 )
@@ -1885,7 +1885,7 @@ def triangular(left, mode, right, size=None):
18851885 """
18861886
18871887 if not use_origin_backend (left ):
1888- if dpnp .is_cuda_backend ():
1888+ if dpnp .is_cuda_backend (): # pragma: no cover
18891889 raise NotImplementedError (
18901890 "Running on CUDA is currently not supported"
18911891 )
@@ -1998,7 +1998,7 @@ def vonmises(mu, kappa, size=None):
19981998 """
19991999
20002000 if not use_origin_backend (mu ):
2001- if dpnp .is_cuda_backend ():
2001+ if dpnp .is_cuda_backend (): # pragma: no cover
20022002 raise NotImplementedError (
20032003 "Running on CUDA is currently not supported"
20042004 )
@@ -2039,7 +2039,7 @@ def wald(mean, scale, size=None):
20392039 """
20402040
20412041 if not use_origin_backend (mean ):
2042- if dpnp .is_cuda_backend ():
2042+ if dpnp .is_cuda_backend (): # pragma: no cover
20432043 raise NotImplementedError (
20442044 "Running on CUDA is currently not supported"
20452045 )
@@ -2080,7 +2080,7 @@ def weibull(a, size=None):
20802080 """
20812081
20822082 if not use_origin_backend (a ):
2083- if dpnp .is_cuda_backend ():
2083+ if dpnp .is_cuda_backend (): # pragma: no cover
20842084 raise NotImplementedError (
20852085 "Running on CUDA is currently not supported"
20862086 )
@@ -2117,7 +2117,7 @@ def zipf(a, size=None):
21172117 """
21182118
21192119 if not use_origin_backend (a ):
2120- if dpnp .is_cuda_backend ():
2120+ if dpnp .is_cuda_backend (): # pragma: no cover
21212121 raise NotImplementedError (
21222122 "Running on CUDA is currently not supported"
21232123 )
0 commit comments