-
Notifications
You must be signed in to change notification settings - Fork 52
/
7B_gemma.py
231 lines (214 loc) · 8.34 KB
/
7B_gemma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
JOB_NAME = "7b_gemma_train"
model_type = "GEMMA"
DO_ALERT = False
VOCAB_SIZE = 256000
SEQ_LEN = 2048
HIDDEN_SIZE = 3072
NUM_ATTENTION_HEAD = 16
NUM_KV_ATTENTION_HEAD = 16
HEAD_DIM = 256
MLP_RATIO = 8
NUM_LAYER = 28
MODEL_ONLY_FOLDER = "local:llm_ckpts_gemma/xxxx"
# Ckpt folder format:
# fs: 'local:/mnt/nfs/XXX'
SAVE_CKPT_FOLDER = "local:llm_ckpts_gemma"
# boto3 Ckpt folder format:
# import os
# BOTO3_IP = os.environ["BOTO3_IP"] # boto3 bucket endpoint
# SAVE_CKPT_FOLDER = f"boto3:s3://model_weights.{BOTO3_IP}/internlm"
CHECKPOINT_EVERY = 50
ckpt = dict(
enable_save_ckpt=False, # enable ckpt save.
enable_internevo2hf_ckpt=False, # enable ckpt save for huggingface format.
save_ckpt_folder=SAVE_CKPT_FOLDER, # Path to save training ckpt.
# 'load_ckpt_info' setting guide:
# 1. the 'path' indicate ckpt path,
# 2. the 'content‘ means what states will be loaded, support: "model", "sampler", "optimizer", "scheduler", "all"
# 3. the ’ckpt_type‘ means the type of checkpoint to be loaded, support: "internevo", "hf", or other custom-defined
# load function such as "llama"
load_ckpt_info=dict(path=MODEL_ONLY_FOLDER, content=("model",), ckpt_type="hf"),
# 'auto_resume' is designed to automatically load the latest checkpoint from 'save_ckpt_folder' when encountering
# training interruptions/hangs caused by hardware failures, using a scheduling system (such as k8s/slurm)
# with an automatic restart mechanism upon training reboot.
# Please be aware that if `auto_resume` is not set (its default value is True), it will not load the checkpoint
# path specified in `load_ckpt_info` by default.
# If you want to initialize your model weights from another model, you must set `auto_resume` to False.
# If you want to train from scratch, please set `auto_resume` to False and 'load_ckpt_info' to None.
auto_resume=False,
checkpoint_every=CHECKPOINT_EVERY,
async_upload=True, # async ckpt upload. (only work for boto3 ckpt)
async_upload_tmp_folder="/dev/shm/internlm_tmp_ckpt/", # path for temporarily files during asynchronous upload.
oss_snapshot_freq=int(CHECKPOINT_EVERY / 2), # snapshot ckpt save frequency.
)
TRAIN_FOLDER = None
VALID_FOLDER = None # "/path/to/dataset"
data = dict(
seq_len=SEQ_LEN,
# micro_num means the number of micro_batch contained in one gradient update
micro_num=4,
# packed_length = micro_bsz * SEQ_LEN
micro_bsz=1,
# defaults to the value of micro_num
valid_micro_num=4,
# defaults to 0, means disable evaluate
valid_every=0,
pack_sample_into_one=False,
total_steps=20,
skip_batches="",
# rampup_batch_size (str): A string with three space-separated integers representing the
# starting batch size, the increment, and the number of steps between
# each increment. For example, "192 24 8" means that the batch size (micro_num)
# starts at 192 and increases by 24 every 8 steps. Defaults to None.
# (IMPORTANT): The interval step size is 'micro_bsz'.
rampup_batch_size="",
# Datasets with less than 50 rows will be discarded
min_length=50,
train_folder=TRAIN_FOLDER,
valid_folder=VALID_FOLDER,
empty_cache_and_diag_interval=200,
diag_outlier_ratio=1.1,
)
grad_scaler = dict(
fp16=dict(
# the initial loss scale, defaults to 2**16
initial_scale=2**16,
# the minimum loss scale, defaults to None
min_scale=1,
# the number of steps to increase loss scale when no overflow occurs
growth_interval=1000,
),
# the multiplication factor for increasing loss scale, defaults to 2
growth_factor=2,
# the multiplication factor for decreasing loss scale, defaults to 0.5
backoff_factor=0.5,
# the maximum loss scale, defaults to None
max_scale=2**24,
# the number of overflows before decreasing loss scale, defaults to 2
hysteresis=2,
)
hybrid_zero_optimizer = dict(
# Enable low_level_optimzer overlap_communication
overlap_sync_grad=True,
overlap_sync_param=False,
# bucket size for nccl communication params
reduce_bucket_size=512 * 1024 * 1024,
# grad clipping
clip_grad_norm=1.0,
)
loss = dict(
label_smoothing=0,
)
adam = dict(
lr=1e-4,
adam_beta1=0.9,
adam_beta2=0.95,
adam_beta2_c=0,
adam_eps=1e-8,
weight_decay=0.01,
)
lr_scheduler = dict(
total_steps=data["total_steps"],
init_steps=0, # optimizer_warmup_step
warmup_ratio=0.01,
eta_min=1e-5,
last_epoch=-1,
)
beta2_scheduler = dict(
init_beta2=adam["adam_beta2"],
c=adam["adam_beta2_c"],
cur_iter=-1,
)
use_fp32_norm = False
model = dict(
checkpoint=False,
num_chunks=1,
num_attention_heads=NUM_ATTENTION_HEAD,
num_kv_attention_heads=NUM_KV_ATTENTION_HEAD,
max_position_embeddings=8192,
embed_split_hidden=True,
vocab_size=VOCAB_SIZE,
embed_grad_scale=1,
parallel_output=True,
hidden_size=HIDDEN_SIZE,
num_layers=NUM_LAYER,
no_bias=True,
mlp_ratio=MLP_RATIO,
apply_post_layer_norm=False,
dtype="torch.bfloat16",
add_unit_offset=True,
norm_type="rmsnorm",
layer_norm_epsilon=1e-6,
head_dim=HEAD_DIM,
use_flash_attn=True,
# Whether the odd and even columns of the query and key in the model are normally interleaved.
# If it's True, the model's odd and even columns are normally ordered; if it's False,
# it means that the model has prematurely concatenated all odd columns and even columns in front
# and back, in order to improve the RoPE's computational efficiency.
# Example:
# qk_interleaved = True: q[-1] = [q1,q2,q3,q4,q5,q6,...], k[-1] = [k1,k2,k3,k4,k5,k6,...]
# qk_interleaved = False: q[-1] = [q1,q3,q5,...,q2,q4,q6,...], k[-1] = [k1,k3,k5,...,k2,k4,k6,...]
qk_interleaved=False,
use_swiglu=False,
)
"""
zero1 parallel (dict):
1. size: int
* if size <= 0, the size of the zero process group is equal to the size of the dp process group,
so parameters will be divided within the range of dp.
* if size == 1, zero is not used, and all dp groups retain the full amount of model parameters.
* if size > 1 and size <= dp world size, the world size of zero is a subset of dp world size.
For smaller models, it is usually a better choice to split the parameters within nodes with a setting <= 8.
2. fsdp: bool, enable/disable torch's fully sharded data parallel, defaults to False.
tensor parallel (dict):
1. size: int, the size of tensor parallel.
2. mode: str, the tensor parallel mode, should be in ['mtp', 'msp', 'fsp', 'isp'],
defaults to 'mtp', means the pure megatron tensor parallel without sequence parallel.
msp: megatron tensor parallel with sequence parallel, sequence parallel size = tensor parallel size.
fsp: tensor parallel by flash-attn with sequence parallel, sequence parallel size = tensor parallel size.
isp: customed intern sequence parallel without tensor parallel, can be used with weight parallel.
pipeline parallel (dict):
1. size: int, the size of pipeline parallel.
2. interleaved_overlap: bool, enable/disable communication overlap when using interleaved pipeline scheduler,
defaults to False.
weight parallel (dict):
1. size: int, the size of weight parallel.
2. overlap: bool, enable/disable all_gather/reduce_scatter communication overlap, defaults to False.
"""
parallel = dict(
zero1=dict(size=-1),
tensor=dict(size=1, mode="mtp"),
pipeline=dict(size=1, interleaved_overlap=True),
weight=dict(size=1, overlap=True),
)
cudnn_deterministic = False
cudnn_benchmark = False
monitor = dict(
# feishu alert configs
alert=dict(
enable_feishu_alert=DO_ALERT,
feishu_alert_address=None, # feishu webhook to send alert message
light_monitor_address=None, # light_monitor address to send heartbeat
alert_file_path=f"llm_alter/{JOB_NAME}_alert.log",
),
tensorboard=dict(
queue_max_length=10,
),
)
# metric_dtype can be "fp32" or other string
# only when set to "fp32" will use fp32 to calc in metrics
# metric_dtype = "fp32"
generation = dict(
ckpt_folder="/path/to/saved/ckpt",
output_folder="/path/to/save/generation",
batch_size=1,
eos_id=[2, 0],
bos_id=1,
max_length=100,
do_sample=True,
temperature=1.0,
top_k=50,
top_p=1.0,
repetition_penalty=1,
length_penalty=1.0,
)