Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: Error found on startup #3

Open
1 task done
dongzhiwen1218 opened this issue Nov 4, 2024 · 0 comments
Open
1 task done

[Bug]: Error found on startup #3

dongzhiwen1218 opened this issue Nov 4, 2024 · 0 comments
Labels
bug Something isn't working

Comments

@dongzhiwen1218
Copy link

Your current environment

root@f288c55a9d76:/data/vllm-kv-cache-compress# python collect_env.py
Collecting environment information...
WARNING 11-04 03:02:44 cuda.py:22] You are using a deprecated pynvml package. Please install nvidia-ml-py instead, and make sure to uninstall pynvml. When both of them are installed, pynvml will take precedence and cause errors. See https://pypi.org/project/pynvml for more information.
/data/vllm-kv-cache-compress/vllm/connections.py:8: RuntimeWarning: Failed to read commit hash:
No module named 'vllm.commit_id'
from vllm.version import version as VLLM_VERSION
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.29.0
Libc version: glibc-2.35

Python version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.15.0-113-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA GeForce RTX 3090
GPU 1: NVIDIA GeForce RTX 3090
GPU 2: NVIDIA GeForce RTX 3090
GPU 3: NVIDIA GeForce RTX 3090

Nvidia driver version: 550.78
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.1.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 52 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 64
On-line CPU(s) list: 0-63
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz
CPU family: 6
Model: 106
Thread(s) per core: 2
Core(s) per socket: 16
Socket(s): 2
Stepping: 6
CPU max MHz: 3500.0000
CPU min MHz: 800.0000
BogoMIPS: 5800.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid fsrm md_clear pconfig flush_l1d arch_capabilities
Virtualization: VT-x
L1d cache: 1.5 MiB (32 instances)
L1i cache: 1 MiB (32 instances)
L2 cache: 40 MiB (32 instances)
L3 cache: 48 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-15,32-47
NUMA node1 CPU(s): 16-31,48-63
Vulnerability Gather data sampling: Mitigation; Microcode
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-dali-cuda120==1.36.0
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] nvidia-nvimgcodec-cu12==0.2.0.7
[pip3] nvidia-nvjitlink-cu12==12.6.77
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] nvidia-pyindex==1.0.9
[pip3] onnx==1.16.0
[pip3] optree==0.11.0
[pip3] pynvml==11.4.1
[pip3] pytorch-quantization==2.1.2
[pip3] pytorch-triton==3.0.0+a9bc1a364
[pip3] pyzmq==25.1.2
[pip3] torch==2.4.0
[pip3] torch-tensorrt==2.3.0a0
[pip3] torchdata==0.7.1a0
[pip3] torchtext==0.17.0a0
[pip3] torchvision==0.19.0
[pip3] transformers==4.46.1
[pip3] triton==3.0.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.0@COMMIT_HASH_PLACEHOLDER
vLLM Build Flags:
CUDA Archs: 5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PXB PXB SYS 0-15,32-47 0 N/A
GPU1 PXB X PIX SYS 0-15,32-47 0 N/A
GPU2 PXB PIX X SYS 0-15,32-47 0 N/A
GPU3 SYS SYS SYS X 16-31,48-63 1 N/A

Legend:

X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks

🐛 Describe the bug

python3 -m vllm.entrypoints.openai.api_server \ --model /data/chinese-llama-2-cui --swap-space 2 \ --tensor-parallel-size 4\ --host 0.0.0.0 --port 83 --disable-log-requests --seed 1 --max-num-seqs 8 --max-num-batched-tokens 4096 ........ ........ Process SpawnProcess-1: Traceback (most recent call last): File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap self.run() File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/data/vllm-kv-cache-compress/vllm/entrypoints/openai/rpc/server.py", line 236, in run_rpc_server server = AsyncEngineRPCServer(async_engine_args, usage_context, rpc_path) File "/data/vllm-kv-cache-compress/vllm/entrypoints/openai/rpc/server.py", line 34, in __init__ self.engine = AsyncLLMEngine.from_engine_args( File "/data/vllm-kv-cache-compress/vllm/engine/async_llm_engine.py", line 775, in from_engine_args engine = cls( File "/data/vllm-kv-cache-compress/vllm/engine/async_llm_engine.py", line 655, in __init__ self.engine = self._init_engine(*args, **kwargs) File "/data/vllm-kv-cache-compress/vllm/engine/async_llm_engine.py", line 875, in _init_engine return engine_class(*args, **kwargs) File "/data/vllm-kv-cache-compress/vllm/engine/async_llm_engine.py", line 262, in __init__ super().__init__(*args, **kwargs) File "/data/vllm-kv-cache-compress/vllm/engine/llm_engine.py", line 360, in __init__ self._initialize_kv_caches() File "/data/vllm-kv-cache-compress/vllm/engine/llm_engine.py", line 495, in _initialize_kv_caches self.model_executor.determine_num_available_blocks(kv_metrics)) TypeError: DistributedGPUExecutor.determine_num_available_blocks() takes 1 positional argument but 2 were given ERROR 11-04 02:49:41 api_server.py:186] RPCServer process died before responding to readiness probe root@f288c55a9d76:/workspace# /usr/lib/python3.10/multiprocessing/resource_tracker.py:224: UserWarning: resource_tracker: There appear to be 1 leaked shared_memory objects to clean up at shutdown warnings.warn('resource_tracker: There appear to be %d ' ^C

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
@dongzhiwen1218 dongzhiwen1218 added the bug Something isn't working label Nov 4, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

1 participant