-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase_modelKD.py
82 lines (70 loc) · 2.75 KB
/
base_modelKD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch
import torch.nn as nn
from attention import Attention, NewAttention
from language_model import WordEmbedding, QuestionEmbedding
from classifier import SimpleClassifier
from fc import FCNet
import numpy as np
def mask_softmax(x,mask):
mask=mask.unsqueeze(2).float()
x2=torch.exp(x-torch.max(x))
x3=x2*mask
epsilon=1e-5
x3_sum=torch.sum(x3,dim=1,keepdim=True)+epsilon
x4=x3/x3_sum.expand_as(x3)
return x4
class BaseModel(nn.Module):
def __init__(self, w_emb, q_emb, v_att, q_net, v_net, classifier):
super(BaseModel, self).__init__()
self.w_emb = w_emb
self.q_emb = q_emb
self.v_att = v_att
self.q_net = q_net
self.v_net = v_net
self.classifier = classifier
self.debias_loss_fn = None
# self.bias_scale = torch.nn.Parameter(torch.from_numpy(np.ones((1, ), dtype=np.float32)*1.2))
self.bias_lin = torch.nn.Linear(1024, 1)
def forward(self, v, q, labels, bias,v_mask):
"""Forward
v: [batch, num_objs, obj_dim]
b: [batch, num_objs, b_dim]
q: [batch_size, seq_length]
return: logits, not probs
"""
w_emb = self.w_emb(q)
q_emb = self.q_emb(w_emb) # [batch, q_dim]
att = self.v_att(v, q_emb)
if v_mask is None:
att = nn.functional.softmax(att, 1)
else:
att= mask_softmax(att,v_mask)
v_emb = (att * v).sum(1) # [batch, v_dim]
q_repr = self.q_net(q_emb)
v_repr = self.v_net(v_emb)
joint_repr = q_repr * v_repr
logits = self.classifier(joint_repr)
if labels is not None:
logits_all, loss = self.debias_loss_fn(joint_repr, logits, bias, labels)
else:
logits_all = None
loss = None
return logits, logits_all, loss, w_emb
def build_baseline0(dataset, num_hid):
w_emb = WordEmbedding(dataset.dictionary.ntoken, 300, 0.0)
q_emb = QuestionEmbedding(300, num_hid, 1, False, 0.0)
v_att = Attention(dataset.v_dim, q_emb.num_hid, num_hid)
q_net = FCNet([num_hid, num_hid])
v_net = FCNet([dataset.v_dim, num_hid])
classifier = SimpleClassifier(
num_hid, 2 * num_hid, dataset.num_ans_candidates, 0.5)
return BaseModel(w_emb, q_emb, v_att, q_net, v_net, classifier)
def build_baseline0_newatt(dataset, num_hid):
w_emb = WordEmbedding(dataset.dictionary.ntoken, 300, 0.0)
q_emb = QuestionEmbedding(300, num_hid, 1, False, 0.0)
v_att = NewAttention(dataset.v_dim, q_emb.num_hid, num_hid)
q_net = FCNet([q_emb.num_hid, num_hid])
v_net = FCNet([dataset.v_dim, num_hid])
classifier = SimpleClassifier(
num_hid, num_hid * 2, dataset.num_ans_candidates, 0.5)
return BaseModel(w_emb, q_emb, v_att, q_net, v_net, classifier)