-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvqa_debias_loss_functions.py
264 lines (206 loc) · 9.35 KB
/
vqa_debias_loss_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
from collections import OrderedDict, defaultdict, Counter
from torch import nn
from torch.nn import functional as F
import numpy as np
import torch
import inspect
def convert_sigmoid_logits_to_binary_logprobs(logits):
"""computes log(sigmoid(logits)), log(1-sigmoid(logits))"""
log_prob = -F.softplus(-logits)
log_one_minus_prob = -logits + log_prob
return log_prob, log_one_minus_prob
def elementwise_logsumexp(a, b):
"""computes log(exp(x) + exp(b))"""
return torch.max(a, b) + torch.log1p(torch.exp(-torch.abs(a - b)))
def renormalize_binary_logits(a, b):
"""Normalize so exp(a) + exp(b) == 1"""
norm = elementwise_logsumexp(a, b)
return a - norm, b - norm
class DebiasLossFn(nn.Module):
"""General API for our loss functions"""
def forward(self, hidden, logits, bias, labels):
"""
:param hidden: [batch, n_hidden] hidden features from the last layer in the model
:param logits: [batch, n_answers_options] sigmoid logits for each answer option
:param bias: [batch, n_answers_options]
bias probabilities for each answer option between 0 and 1
:param labels: [batch, n_answers_options]
scores for each answer option, between 0 and 1
:return: Scalar loss
"""
raise NotImplementedError()
def to_json(self):
"""Get a json representation of this loss function.
We construct this by looking up the __init__ args
"""
cls = self.__class__
init = cls.__init__
if init is object.__init__:
return [] # No init args
init_signature = inspect.getargspec(init)
if init_signature.varargs is not None:
raise NotImplementedError("varags not supported")
if init_signature.keywords is not None:
raise NotImplementedError("keywords not supported")
args = [x for x in init_signature.args if x != "self"]
out = OrderedDict()
out["name"] = cls.__name__
for key in args:
out[key] = getattr(self, key)
return out
class Plain(DebiasLossFn):
def forward(self, hidden, logits, bias, labels):
loss = F.binary_cross_entropy_with_logits(logits, labels)
loss *= labels.size(1)
return loss
class PlainKD(DebiasLossFn):
def forward(self, hidden, logits, bias, labels):
loss = F.binary_cross_entropy_with_logits(logits, labels, reduction='none')
# loss *= labels.size(1)
loss = loss.sum(1)
# return loss
return None, loss
class Focal(DebiasLossFn):
def forward(self, hidden, logits, bias, labels):
# import pdb;pdb.set_trace()
focal_logits=torch.log(F.softmax(logits,dim=1)+1e-5) * ((1-F.softmax(bias,dim=1))*(1-F.softmax(bias,dim=1)))
loss=F.binary_cross_entropy_with_logits(focal_logits,labels)
loss*=labels.size(1)
return loss
class ReweightByInvBias(DebiasLossFn):
def forward(self, hidden, logits, bias, labels):
# Manually compute the binary cross entropy since the old version of torch always aggregates
log_prob, log_one_minus_prob = convert_sigmoid_logits_to_binary_logprobs(logits)
loss = -(log_prob * labels + (1 - labels) * log_one_minus_prob)
weights = (1 - bias)
loss *= weights # Apply the weights
return loss.sum() / weights.sum()
class BiasProduct(DebiasLossFn):
def __init__(self, smooth=True, smooth_init=-1, constant_smooth=0.0):
"""
:param smooth: Add a learned sigmoid(a) factor to the bias to smooth it
:param smooth_init: How to initialize `a`
:param constant_smooth: Constant to add to the bias to smooth it
"""
super(BiasProduct, self).__init__()
self.constant_smooth = constant_smooth
self.smooth_init = smooth_init
self.smooth = smooth
if smooth:
self.smooth_param = torch.nn.Parameter(
torch.from_numpy(np.full((1,), smooth_init, dtype=np.float32)))
else:
self.smooth_param = None
def forward(self, hidden, logits, bias, labels):
smooth = self.constant_smooth
if self.smooth:
smooth += F.sigmoid(self.smooth_param)
# Convert the bias into log-space, with a factor for both the
# binary outputs for each answer option
bias_lp = torch.log(bias + smooth)
bias_l_inv = torch.log1p(-bias + smooth)
# Convert the the logits into log-space with the same format
log_prob, log_one_minus_prob = convert_sigmoid_logits_to_binary_logprobs(logits)
# import pdb;pdb.set_trace()
# Add the bias
log_prob += bias_lp
log_one_minus_prob += bias_l_inv
# Re-normalize the factors in logspace
log_prob, log_one_minus_prob = renormalize_binary_logits(log_prob, log_one_minus_prob)
# Compute the binary cross entropy
loss = -(log_prob * labels + (1 - labels) * log_one_minus_prob).sum(1).mean(0)
return loss
class LearnedMixin(DebiasLossFn):
def __init__(self, w, smooth=True, smooth_init=-1, constant_smooth=0.0):
"""
:param w: Weight of the entropy penalty
:param smooth: Add a learned sigmoid(a) factor to the bias to smooth it
:param smooth_init: How to initialize `a`
:param constant_smooth: Constant to add to the bias to smooth it
"""
super(LearnedMixin, self).__init__()
self.w = w
# self.w=0
self.smooth_init = smooth_init
self.constant_smooth = constant_smooth
self.bias_lin = torch.nn.Linear(1024, 1)
self.smooth = smooth
if self.smooth:
self.smooth_param = torch.nn.Parameter(
torch.from_numpy(np.full((1,), smooth_init, dtype=np.float32)))
else:
self.smooth_param = None
def forward(self, hidden, logits, bias, labels):
factor = self.bias_lin.forward(hidden) # [batch, 1]
factor = F.softplus(factor)
bias = torch.stack([bias, 1 - bias], 2) # [batch, n_answers, 2]
# Smooth
bias += self.constant_smooth
if self.smooth:
soften_factor = F.sigmoid(self.smooth_param)
bias = bias + soften_factor.unsqueeze(1)
bias = torch.log(bias) # Convert to logspace
# Scale by the factor
# [batch, n_answers, 2] * [batch, 1, 1] -> [batch, n_answers, 2]
bias = bias * factor.unsqueeze(1)
log_prob, log_one_minus_prob = convert_sigmoid_logits_to_binary_logprobs(logits)
log_probs = torch.stack([log_prob, log_one_minus_prob], 2)
# Add the bias in
logits = bias + log_probs
# Renormalize to get log probabilities
log_prob, log_one_minus_prob = renormalize_binary_logits(logits[:, :, 0], logits[:, :, 1])
# Compute loss
loss = -(log_prob * labels + (1 - labels) * log_one_minus_prob).sum(1).mean(0)
# Re-normalized version of the bias
bias_norm = elementwise_logsumexp(bias[:, :, 0], bias[:, :, 1])
bias_logprob = bias - bias_norm.unsqueeze(2)
# Compute and add the entropy penalty
entropy = -(torch.exp(bias_logprob) * bias_logprob).sum(2).mean()
return loss + self.w * entropy
class LearnedMixinKD(DebiasLossFn):
def __init__(self, smooth=True, smooth_init=-1, constant_smooth=0.0):
"""
:param w: Weight of the entropy penalty
:param smooth: Add a learned sigmoid(a) factor to the bias to smooth it
:param smooth_init: How to initialize `a`
:param constant_smooth: Constant to add to the bias to smooth it
"""
super(LearnedMixinKD, self).__init__()
self.smooth_init = smooth_init
self.constant_smooth = constant_smooth
self.bias_lin = torch.nn.Linear(1024, 1)
self.smooth = smooth
if self.smooth:
self.smooth_param = torch.nn.Parameter(
torch.from_numpy(np.full((1,), smooth_init, dtype=np.float32)))
else:
self.smooth_param = None
def forward(self, hidden, logits, bias, labels):
factor = self.bias_lin.forward(hidden) # [batch, 1]
factor = F.softplus(factor)
bias = torch.stack([bias, 1 - bias], 2) # [batch, n_answers, 2]
# Smooth
bias += self.constant_smooth
if self.smooth:
soften_factor = F.sigmoid(self.smooth_param)
bias = bias + soften_factor.unsqueeze(1)
bias = torch.log(bias) # Convert to logspace
# Scale by the factor
# [batch, n_answers, 2] * [batch, 1, 1] -> [batch, n_answers, 2]
bias = bias * factor.unsqueeze(1)
log_prob, log_one_minus_prob = convert_sigmoid_logits_to_binary_logprobs(logits)
log_probs = torch.stack([log_prob, log_one_minus_prob], 2)
# Add the bias in
logits = bias + log_probs
# Renormalize to get log probabilities
log_prob, log_one_minus_prob = renormalize_binary_logits(logits[:, :, 0], logits[:, :, 1])
# Compute loss
loss = -(log_prob * labels + (1 - labels) * log_one_minus_prob).sum(1).mean(0)
# Re-normalized version of the bias
bias_norm = elementwise_logsumexp(bias[:, :, 0], bias[:, :, 1])
bias_logprob = bias - bias_norm.unsqueeze(2)
prob_all = torch.exp(log_prob)
p = torch.clamp(1-prob_all, min=1e-12)
p = torch.clamp(prob_all/p, min=1e-12)
logits_all = torch.log(p)
return logits_all, loss