forked from Yijunmaverick/CartoonGAN-Test-Pytorch-Torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.lua
76 lines (64 loc) · 1.79 KB
/
test.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
require 'cutorch'
require 'nn'
require 'cunn'
require 'image'
require 'nngraph'
require 'paths'
require 'src/InstanceNormalization'
util = paths.dofile('src/util.lua')
local cmd = torch.CmdLine()
cmd:option('-input_dir', 'test_img');
cmd:option('-output_dir', 'test_output', 'Path to save stylized image.')
cmd:option('-load_size', 450)
cmd:option('-gpu', 0, '-1 for CPU mode')
cmd:option('-model_path', './pretrained_model/')
cmd:option('-style', 'Hosoda')
opt = cmd:parse(arg)
if paths.dirp(opt.output_dir) then
else
paths.mkdir(opt.output_dir)
end
if opt.gpu > -1 then
cutorch.setDevice(opt.gpu+1)
end
-- Define model
local model = torch.load(paths.concat(opt.model_path .. opt.style .. '_net_G_float.t7'))
model:evaluate()
if opt.gpu > -1 then
print('GPU mode')
model:cuda()
else
print('CPU mode')
model:float()
end
contentPaths = {}
if opt.input_dir ~= '' then
contentPaths = util.extractImageNamesRecursive(opt.input_dir)
else
print('Please specify the input dierectory')
end
for i=1, #contentPaths do
local contentPath = contentPaths[i]
local contentExt = paths.extname(contentPath)
local contentName = paths.basename(contentPath, contentExt)
-- load image
local img = image.load(contentPath, 3, 'float')
-- resize image, keep aspect ratio
img = image.scale(img, opt.load_size, 'bilinear')
sg = img:size()
local input = nil
if opt.gpu > -1 then
input = torch.zeros(1, sg[1], sg[2], sg[3]):cuda()
input[1] = img
else
input = torch.zeros(1, sg[1], sg[2], sg[3]):float()
input[1] = img
end
-- forward
local out = util.deprocess_batch(model:forward(util.preprocess_batch(input)))
-- save
local savePath = paths.concat(opt.output_dir, contentName .. '_' .. opt.style .. '.' .. contentExt)
image.save(savePath, out[1])
collectgarbage()
end
print('Done!')