-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathreservoir.py
78 lines (69 loc) · 3.11 KB
/
reservoir.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
'''
@Description:
@Author: voicebeer
@Date: 2020-07-03 00:53:24
@LastEditors: Please set LastEditors
@LastEditTime: 2020-08-04 01:17:37
'''
'''
1. Load source data.
2. Training one classifier to one source data using SVM(other models as alternatives)
'''
# for the model
from sklearn import svm
from sklearn.linear_model import LogisticRegression
from sklearn.calibration import CalibratedClassifierCV
from sklearn.utils import shuffle
# model storage
import joblib
# standard package
import numpy as np
# utils
import utils
dataset_name = 'seed3'
def initiate_cross_sub_reservoir():
sub_data, sub_label = utils.load_by_session(dataset_name) # 3*14*(m*310)
sub_data, sub_label = shuffle(sub_data, sub_label, random_state=0)
for i in range(3):
for j in range(14):
clf = LogisticRegression(random_state=0, max_iter=10000)
clf.fit(utils.normalization(sub_data[i][j]), sub_label[i][j].squeeze())
print(("clf " + str(i) + " " + str(j)), utils.test(clf, utils.normalization(sub_data[i][j]), sub_label[i][j].squeeze()))
if dataset_name == 'seed4':
path = "models/seed4/csu/sesn" + str(i) + "/lr" + str(j) + ".m"
elif dataset_name == 'seed3':
path = "models/seed3/csu/sesn" + str(i) + "/lr" + str(j) + ".m"
joblib.dump(clf, path)
def initiate_cross_ses_reservoir():
ses_data, ses_label = utils.load_by_subject(dataset_name) # 15*2*(m*310)
ses_data, ses_label = shuffle(ses_data, ses_label, random_state=0)
for i in range(15):
for j in range(2):
clf = LogisticRegression(random_state=0, max_iter=10000)
# clf = svm.LinearSVC(max_iter=10000)
# clf = CalibratedClassifierCV(clf, cv=5)
clf.fit(utils.normalization(ses_data[i][j]), ses_label[i][j].squeeze())
print(("clf " + str(i) + " " + str(j)), utils.test(clf, utils.normalization(ses_data[i][j]), ses_label[i][j].squeeze()))
if dataset_name == 'seed4':
path = "models/seed4/csn/sub" + str(i) + "/lr" + str(j) + ".m"
elif dataset_name == 'seed3':
path = "models/seed3/csn/sub" + str(i) + "/lr" + str(j) + ".m"
# path = "models/csn/sub" + str(i) + "/lr" + str(j) + ".m"
joblib.dump(clf, path)
def initiate_cross_sub_ses_reservoir():
subs_data, subs_label = utils.load_session_data_label(dataset_name, 0)
subs_data, subs_label = shuffle(subs_data, subs_label, random_state=0)
# print(len(subs_data[0]))
for i in range(15):
clf = LogisticRegression(random_state=0, max_iter=10000)
clf.fit(utils.normalization(subs_data[i]), subs_label[i].squeeze())
print("clf: ", utils.test(clf, utils.normalization(subs_data[i]), subs_label[i].squeeze()))
if dataset_name == 'seed4':
path = "models/seed4/csun/lr" + str(i) + ".m"
elif dataset_name == 'seed3':
path = "models/seed3/csun/lr" + str(i) + ".m"
# path = "models/csun/lr" + str(i) + ".m"
joblib.dump(clf, path)
# initiate_cross_ses_reservoir()
# initiate_cross_sub_reservoir()
initiate_cross_sub_ses_reservoir()