forked from TOPO-EPFL/CrossLoc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_single_task.py
419 lines (350 loc) · 18.9 KB
/
test_single_task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import pdb
import glob
import torch
import numpy as np
import argparse
import os
import matplotlib.pyplot as plt
from tqdm import tqdm
from utils.learning import get_nodata_value, set_random_seed
from utils.evaluation import config_dataloader, config_network, scene_coords_eval, scene_coords_printout,\
semantic_eval, semantic_plotter, semantic_printout, depth_eval, depth_printout, normal_eval, normal_printout
from typing import Tuple, Union
def _config_parser():
"""
Task specific argument parser
"""
parser = argparse.ArgumentParser(
description='Initialize a scene coordinate regression network.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
"""General training parameter"""
# Dataset and dataloader
parser.add_argument('scene', help='name of a scene in the dataset folder')
parser.add_argument('--grayscale', '-grayscale', action='store_true',
help='use grayscale image as model input')
parser.add_argument('--task', type=str,
help='specify the single regression task, should be "coord", "depth" or "normal"')
parser.add_argument('--section', type=str, nargs='+', default=['val_drone_sim', 'val_drone_real'],
help='Dataset to test model performance, could be val or test.')
# Network structure
parser.add_argument('--network_in', type=str, default=None,
help='file name of a network initialized for the scene')
parser.add_argument('--tiny', '-tiny', action='store_true',
help='Load a model with massively reduced capacity for a low memory footprint.')
parser.add_argument('--fullsize', '-fullsize', action='store_true',
help='to output fullsize prediction w/o down-sampling.')
"""I/O parameters"""
parser.add_argument('--session', '-sid', default='',
help='custom session name appended to output files'
'useful to separate different runs of a script')
parser.add_argument('--search_dir', action='store_true',
help='Search local directory for all models. '
'Note: most dataset, dataloader & section parameters would be reset and '
'automatically deduced from the folder names!')
parser.add_argument('--min_ckpt_iter', default=None, type=float,
help='Minimum checkpoint model iteration to evaluate.')
parser.add_argument('--max_ckpt_iter', default=None, type=float,
help='Maximum checkpoint model iteration to evaluate.')
parser.add_argument('--keywords', default=None, nargs='+',
help="Keywords to filter out some network weight paths.")
parser.add_argument('--plot', action="store_true",
help="Plot the qualitative results.")
parser.add_argument('--save_pred', action="store_true",
help="Save predicted results.")
"""DSAC* PnP solver parameters"""
# Default values are used
parser.add_argument('--hypotheses', '-hyps', type=int, default=64,
help='number of hypotheses, i.e. number of RANSAC iterations')
parser.add_argument('--threshold', '-t', type=float, default=10,
help='inlier threshold in pixels (RGB) or centimeters (RGB-D)')
parser.add_argument('--inlieralpha', '-ia', type=float, default=100,
help='alpha parameter of the soft inlier count; '
'controls the softness of the hypotheses score distribution; lower means softer')
parser.add_argument('--maxpixelerror', '-maxerrr', type=float, default=100,
help='maximum reprojection (RGB, in px) or 3D distance (RGB-D, in cm) error when '
'checking pose consistency towards all measurements; '
'error is clamped to this value for stability')
"""Uncertainty loss parameter"""
parser.add_argument('--uncertainty', '-uncertainty', default=None, type=str,
help='enable uncertainty learning')
opt = parser.parse_args()
# Auto-reset parameters, they will be deduced from the searched folders' names
if opt.search_dir:
opt.scene = None
opt.grayscale = None
opt.task = None
opt.section = None
opt.tiny = None
opt.fullsize = None
opt.uncertainty = None
print("search_dir is ON. Model parameters would be read from the folder name...")
if isinstance(opt.uncertainty, str):
if opt.uncertainty.lower() == 'none':
opt.uncertainty = None
elif opt.uncertainty.lower() == 'mle':
opt.uncertainty = 'MLE'
return opt
def _config_weight_path(network_in: Union[str, list], keywords: Union[None, str, list] = None,
search_dir: bool = False, min_ckpt_iter: float = 0.0, max_ckpt_iter: float = 1e99) -> list:
"""
Identify the paths to the model weights.
@param network_in: One or multiple parental directories or paths to network model weight.
@param keywords: One or multiple (union) keywords to search for.
@param search_dir: Search for all model weights found in the single specified directory.
@param min_ckpt_iter: Minimum iteration checkpoint model to evaluate.
@param max_ckpt_iter: Maximum iteration checkpoint model to evaluate.
@return: network_paths One or multiple paths to the network weights filtered by the keywords.
"""
if isinstance(network_in, list):
# A list of model weights or directories containing model weights
_network_in = sorted([os.path.abspath(item) for item in network_in])
print("To load {:d} network weights...")
[print(entry) for entry in _network_in]
elif isinstance(network_in, str):
# A path to a model weight of a directory containing model weight
_network_in = [os.path.abspath(network_in)]
print("To load network weight from {:s}".format(_network_in[0]))
else:
raise NotImplementedError
if search_dir:
# Turn the directory into a list of sub-directories
assert len(_network_in) == 1, "_network_in must have one item in search_dir mode. Now it's: {}".format(
_network_in)
assert os.path.isdir(_network_in[0]), "_network_in {:s} is not a directory.".format(_network_in[0])
src_dir = os.path.abspath(_network_in[0])
_network_in = [os.path.join(src_dir, sub_dir) for sub_dir in os.listdir(src_dir)]
"""Get the exact model weights path"""
network_paths = []
for path in _network_in:
assert os.path.exists(path), "Network input path {:s} is not found.".format(path)
if os.path.isdir(path):
# some directory containing weight
model_path = os.path.join(path, 'model.net')
if os.path.exists(model_path):
network_paths.append(model_path)
ckpt_models = glob.glob(os.path.join(path, 'ckpt_iter*.net'))
network_paths += ckpt_models
elif os.path.isfile(path):
# some designated model path
if os.path.basename(path).startswith("model") or "ckpt_" in os.path.basename(path):
if os.path.basename(path).endswith('.net'):
network_paths.append(path)
else:
raise NotImplementedError
"""Keyword search"""
if keywords is None:
pass
elif isinstance(keywords, str):
keywords = [keywords]
elif isinstance(keywords, list):
pass
else:
raise NotImplementedError
if keywords is not None:
network_paths_raw = network_paths.copy()
network_paths = []
for path in network_paths_raw:
flags = np.array([keyword in os.path.dirname(path) for keyword in keywords])
if flags.all():
network_paths.append(path)
network_paths = np.sort(np.unique(network_paths)).tolist()
# check minimum checkpoint iteration
_network_paths = network_paths.copy()
network_paths = []
if min_ckpt_iter is not None:
if min_ckpt_iter >= 0:
for path in _network_paths:
if 'ckpt_iter_' in os.path.basename(path):
this_iter = int(os.path.basename(path).split('_')[-1].replace('.net', ''))
if this_iter > min_ckpt_iter:
network_paths.append(path)
else:
network_paths = _network_paths
# check maximum checkpoint iteration
_network_paths = network_paths.copy()
network_paths = []
if max_ckpt_iter is not None:
assert max_ckpt_iter < float('inf')
for path in _network_paths:
if 'ckpt_iter_' in os.path.basename(path):
this_iter = int(os.path.basename(path).split('_')[-1].replace('.net', ''))
if this_iter < max_ckpt_iter:
network_paths.append(path)
else:
network_paths = _network_paths
network_paths.sort()
print("With the keywords {:}, and min ckpt iter {}, max ckpt iter {}".format(
keywords, min_ckpt_iter, max_ckpt_iter), end=" ")
print("the following {:d} network weight paths are retrieved:".format(len(network_paths)))
for idx, path in enumerate(network_paths):
print("Network weight #{:d}: {:s}".format(idx, path))
return network_paths
def read_mata_info(folder_name):
"""Read meta info from the folder name."""
def get_uncertainty_keyword(dirname):
if 'no_unc' in dirname:
return None
elif 'unc-MLE' in dirname:
return 'MLE'
else:
raise NotImplementedError
scene = folder_name.split('-')[0]
grayscale = '-gray' in folder_name
task = folder_name.split('-')[1]
if 'decoder' in folder_name:
# after fine-tuning
# section = ['test_drone_sim', 'test_drone_real', 'test_oop_drone_sim', 'test_oop_drone_real']
if '-oop-' in folder_name:
section = ['test_oop_drone_real']
elif '-ip-' in folder_name:
section = ['test_drone_real']
else:
raise NotImplementedError
else:
# after pretraining
# section = ['val_sim', 'val_drone_sim', 'val_drone_real', 'val_oop_drone_sim', 'val_oop_drone_real']
section = ['val_drone_sim', 'val_drone_real'] # fast
tiny = '-tiny' in folder_name
fullsize = '-fullsize' in folder_name or '-semantics' in folder_name
uncertainty = get_uncertainty_keyword(folder_name)
return scene, grayscale, task, section, tiny, fullsize, uncertainty
def main():
"""
Main function.
"""
"""Initialization"""
set_random_seed(2021)
opt = _config_parser()
print(opt)
network_paths = _config_weight_path(opt.network_in, opt.keywords, opt.search_dir,
opt.min_ckpt_iter, opt.max_ckpt_iter)
"""Loop over network weights"""
for i, network_path in enumerate(network_paths):
print("{:s} Evaluating network #{:d} / {:d} {:s}\nPath: {:s}".format('='*20, i+1, len(network_paths),
'='*20, network_path))
# update evaluation if needed
if opt.search_dir:
scene, grayscale, task, section, tiny, fullsize, uncertainty = read_mata_info(os.path.basename(
os.path.dirname(network_path)))
print("Scene: {:s}, grayscale: {}, task: {:s}, #section: {:d}, tiny: {}, fullsize: {}, uncertainty: {}".
format(scene, grayscale, task, len(section), tiny, fullsize, uncertainty))
else:
scene, grayscale, task, section, tiny, fullsize, uncertainty = opt.scene, opt.grayscale, opt.task, \
opt.section, opt.tiny, opt.fullsize, opt.uncertainty
# initialization
nodata_value = get_nodata_value(scene)
network_basename = os.path.basename(network_path).lower()
if '-decoder_coord_free_depth_normal_semantics-senc-' in network_basename or 'crossloc_se' in network_basename:
num_enc = 4
elif '-decoder_coord_free_semantics-senc-' in network_basename:
num_enc = 2
elif '-decoder_coord_free_depth_normal-senc-' in network_basename or 'crossloc' in network_basename:
num_enc = 3
else:
num_enc = 0
network = config_network(scene, task, tiny, grayscale, uncertainty, fullsize, network_path, num_enc=num_enc)
testing_log = os.path.join(os.path.dirname(network_path), 'results_{:s}_task_{:s}.txt'.format(
os.path.basename(network_path), task))
"""Loop over dataset sections"""
for this_section in section:
print("{:s} Evaluating over section {:s} {:s}".format('*'*20, this_section, '*'*20))
eval_set, eval_set_loader = config_dataloader(scene, task, grayscale, this_section, fullsize, mute=True)
if opt.save_pred:
pred_dir = os.path.abspath(os.path.join(network_path, '../{:s}_pred_{:s}_{:s}'.format(
task, os.path.basename(network_path), this_section)))
os.makedirs(pred_dir, exist_ok=True)
if task == 'coord':
t_err_ls, r_err_ls, est_xyz_ls, coords_error_ls = [], [], [], []
elif task == 'depth':
depth_abs_rel_err_ls, depth_rms_err_ls = [], []
elif task == 'normal':
normal_angular_err_ls = []
elif task == 'semantics':
mean_iou_ls = []
fw_iou_ls = []
accuracy_ls = []
else:
raise NotImplementedError
file_name_ls = []
for j, (image, gt_pose, gt_label, focal_length, file_name) in enumerate(tqdm(eval_set_loader,
desc='Network #%d' % i)):
"""Data pre-processing"""
focal_length = float(focal_length.view(-1)[0])
"""
@image [B, C, H, W] ---> [B, 3, 480, 720] by default w/o augmentation, RGB image
@gt_pose [B, 4, 4], camera to world matrix
@gt_label [B, C, H_ds, W_ds] ---> [B, C, 60, 90] by default w/o augmentation
@focal_length [1], adapted to augmentation
@file_name a list size of B
"""
# cam_mat = get_cam_mat(image.size(3), image.size(2), focal_length)
# gt_pose = gt_pose.cuda()
# gt_label = gt_label.cuda()
file_name = os.path.basename(file_name[0])
file_name_ls.append(file_name)
with torch.no_grad():
"""Forward pass"""
predictions = network(image.cuda()) # [1, C, H, W]
if fullsize:
assert predictions.size(2) == image.size(2) and predictions.size(3) == image.size(3)
assert predictions.size(2) == gt_label.size(2) and predictions.size(3) == gt_label.size(3)
if uncertainty is None:
uncertainty_map = None
elif uncertainty == 'MLE':
predictions, uncertainty_map = torch.split(predictions,
[network.num_task_channel, network.num_pos_channel],
dim=1) # typically [1, C, H, W] + [1, 1, H, W]
else:
raise NotImplementedError
"""Metrics evaluation"""
# predictions = gt_label # debug only!
if task == 'coord':
t_err, r_err, est_xyz, coords_error, out_pose = scene_coords_eval(
predictions, gt_label, gt_pose, nodata_value, focal_length,
image.size(2), image.size(3), opt.hypotheses, opt.threshold,
opt.inlieralpha, opt.maxpixelerror, network.OUTPUT_SUBSAMPLE)
t_err_ls.append(t_err)
r_err_ls.append(r_err)
est_xyz_ls.append(est_xyz)
coords_error_ls.append(coords_error)
if opt.save_pred:
np.savez(os.path.join(pred_dir, file_name.replace('.png', '.npz')),
coord_pred=predictions.squeeze().cpu().numpy(), # [3, 60, 90]
coord_gt=gt_label.squeeze().cpu().numpy(), # [3, 60, 90]
coord_unc=uncertainty_map.squeeze().cpu().numpy(), # [60, 90]
pose_pred=out_pose.cpu().numpy(), # [4, 4]
pose_gt=gt_pose.squeeze().cpu().numpy(), # [4, 4]
pose_t_err=t_err, pose_r_err=r_err) # scalars
elif task == 'depth':
depth_abs_rel, depth_rms = depth_eval(predictions, gt_label, nodata_value)
depth_abs_rel_err_ls.append(depth_abs_rel)
depth_rms_err_ls.append(depth_rms)
elif task == 'normal':
normal_angular_err = normal_eval(predictions, gt_label, nodata_value)
normal_angular_err_ls.append(normal_angular_err)
elif task == 'semantics':
class_prediction, miou, fwiou, acc = semantic_eval(predictions, gt_label, mute=True)
mean_iou_ls.append(miou)
fw_iou_ls.append(fwiou)
accuracy_ls.append(acc)
"""plot the batch results"""
if opt.plot:
semantic_plotter(image, class_prediction, gt_label, network_path, this_section)
if j > 10:
break
else:
raise NotImplementedError
"""Save to file"""
print("{:s} Evaluating over section {:s} is done!{:s}".format('*'*20, this_section, '*'*20))
if task == "coord":
scene_coords_printout(t_err_ls, r_err_ls, est_xyz_ls, coords_error_ls, testing_log,
network_path, this_section, file_name_ls)
elif task == 'depth':
depth_printout(depth_abs_rel_err_ls, depth_rms_err_ls, testing_log, this_section)
elif task == 'normal':
normal_printout(normal_angular_err_ls, testing_log, this_section)
elif task == 'semantics':
semantic_printout(accuracy_ls, mean_iou_ls, fw_iou_ls, testing_log, this_section)
print("Network testing finished. Please find the log at {:s}".format(testing_log))
if __name__ == "__main__":
main()