-
Notifications
You must be signed in to change notification settings - Fork 0
/
decode_seq2seq.py
271 lines (236 loc) · 12.9 KB
/
decode_seq2seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# coding=utf-8
# The MIT License (MIT)
# Copyright (c) Microsoft Corporation
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import logging
import glob
import argparse
import math
import random
from tqdm import tqdm, trange
import pickle
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from tokenization_unilm import UnilmTokenizer, WhitespaceTokenizer
from transformers import AdamW, get_linear_schedule_with_warmup
from modeling_unilm import UnilmForSeq2SeqDecode, UnilmConfig
# from transformers import (UnilmTokenizer, WhitespaceTokenizer,
# UnilmForSeq2SeqDecode, AdamW, UnilmConfig)
import utils_seq2seq
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys())
for conf in (UnilmConfig,)), ())
MODEL_CLASSES = {
'unilm': (UnilmConfig, UnilmForSeq2SeqDecode, UnilmTokenizer)
}
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
def detokenize(tk_list):
r_list = []
for tk in tk_list:
if tk.startswith('##') and len(r_list) > 0:
r_list[-1] = r_list[-1] + tk[2:]
else:
r_list.append(tk)
return r_list
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
parser.add_argument("--model_recover_path", default=None, type=str,
help="The file of fine-tuned pretraining model.")
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--max_seq_length", default=512, type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
# decoding parameters
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--input_file", type=str, help="Input file")
parser.add_argument("--input_aspect", type=str, help="Input file")
parser.add_argument('--subset', type=int, default=0,
help="Decode a subset of the input dataset.")
parser.add_argument("--output_file", type=str, help="output file")
parser.add_argument("--split", type=str, default="",
help="Data split (train/val/test).")
parser.add_argument('--tokenized_input', action='store_true',
help="Whether the input is tokenized.")
parser.add_argument('--seed', type=int, default=123,
help="random seed for initialization")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument('--batch_size', type=int, default=4,
help="Batch size for decoding.")
parser.add_argument('--beam_size', type=int, default=1,
help="Beam size for searching")
parser.add_argument('--length_penalty', type=float, default=0,
help="Length penalty for beam search")
parser.add_argument('--forbid_duplicate_ngrams', action='store_true')
parser.add_argument('--forbid_ignore_word', type=str, default=None,
help="Forbid the word during forbid_duplicate_ngrams")
parser.add_argument("--min_len", default=None, type=int)
parser.add_argument('--need_score_traces', action='store_true')
parser.add_argument('--ngram_size', type=int, default=3)
parser.add_argument('--max_tgt_length', type=int, default=128,
help="maximum length of target sequence")
args = parser.parse_args()
if args.need_score_traces and args.beam_size <= 1:
raise ValueError(
"Score trace is only available for beam search with beam size > 1.")
if args.max_tgt_length >= args.max_seq_length - 2:
raise ValueError("Maximum tgt length exceeds max seq length - 2.")
device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path, max_position_embeddings=args.max_seq_length)
tokenizer = tokenizer_class.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
bi_uni_pipeline = []
bi_uni_pipeline.append(utils_seq2seq.Preprocess4Seq2seqDecode(list(tokenizer.vocab.keys()), tokenizer.convert_tokens_to_ids,
args.max_seq_length, max_tgt_length=args.max_tgt_length))
# Prepare model
mask_word_id, eos_word_ids, sos_word_id = tokenizer.convert_tokens_to_ids(
["[MASK]", "[SEP]", "[S2S_SOS]"])
forbid_ignore_set = None
if args.forbid_ignore_word:
w_list = []
for w in args.forbid_ignore_word.split('|'):
if w.startswith('[') and w.endswith(']'):
w_list.append(w.upper())
else:
w_list.append(w)
forbid_ignore_set = set(tokenizer.convert_tokens_to_ids(w_list))
print(args.model_recover_path)
for model_recover_path in glob.glob(args.model_recover_path.strip()):
logger.info("***** Recover model: %s *****", model_recover_path)
model_recover = torch.load(model_recover_path)
model = model_class.from_pretrained(args.model_name_or_path, state_dict=model_recover, config=config, mask_word_id=mask_word_id, search_beam_size=args.beam_size, length_penalty=args.length_penalty,
eos_id=eos_word_ids, sos_id=sos_word_id, forbid_duplicate_ngrams=args.forbid_duplicate_ngrams, forbid_ignore_set=forbid_ignore_set, ngram_size=args.ngram_size, min_len=args.min_len)
del model_recover
model.to(device)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError(
"Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model = amp.initialize(model, opt_level=args.fp16_opt_level)
if n_gpu > 1:
model = torch.nn.DataParallel(model)
torch.cuda.empty_cache()
model.eval()
next_i = 0
max_src_length = args.max_seq_length - 2 - args.max_tgt_length
with open(args.input_file, encoding="utf-8") as fin:
input_lines = [x.split('##')[0].split('$$')[1].strip()+'。' for x in fin.readlines()]
if args.subset > 0:
logger.info("Decoding subset: %d", args.subset)
input_lines = input_lines[:args.subset]
with open(args.input_aspect, encoding="utf-8") as fin:
input_aspects = [int(x.strip()) for x in fin.readlines()]
# if args.subset > 0:
# logger.info("Decoding subset: %d", args.subset)
# input_lines = input_lines[:args.subset]
data_tokenizer = WhitespaceTokenizer() if args.tokenized_input else tokenizer
input_lines = [data_tokenizer.tokenize(
x)[:max_src_length] for x in input_lines]
input_lines = sorted(list(enumerate(input_lines)),
key=lambda x: -len(x[1]))
new_input_aspects = [input_aspects[i[0]] for i in input_lines]
output_lines = [""] * len(input_lines)
score_trace_list = [None] * len(input_lines)
total_batch = math.ceil(len(input_lines) / args.batch_size)
with tqdm(total=total_batch) as pbar:
while next_i < len(input_lines):
_chunk = input_lines[next_i:next_i + args.batch_size]
_chunk_asp = new_input_aspects[next_i:next_i + args.batch_size]
buf_id = [x[0] for x in _chunk]
buf = [x[1] for x in _chunk]
next_i += args.batch_size
max_a_len = max([len(x) for x in buf])
instances = []
for instance in [(x, max_a_len, y) for x, y in zip(buf, _chunk_asp)]:
for proc in bi_uni_pipeline:
instances.append(proc(instance))
with torch.no_grad():
batch = utils_seq2seq.batch_list_to_batch_tensors(
instances)
batch = [
t.to(device) if t is not None else None for t in batch]
input_ids, input_ids_pad, token_type_ids, position_ids, input_mask, asps, clss, mask_cls, mask_word_sent_id = batch
traces = model(input_ids, input_ids_pad, token_type_ids,
position_ids, input_mask, aspects=asps, clss=clss, mask_cls=mask_cls, mask_word_sent_id=mask_word_sent_id)
if args.beam_size > 1:
traces = {k: v.tolist() for k, v in traces.items()}
output_ids = traces['pred_seq']
else:
output_ids = traces.tolist()
for i in range(len(buf)):
w_ids = output_ids[i]
output_buf = tokenizer.convert_ids_to_tokens(w_ids)
output_tokens = []
for t in output_buf:
if t in ("[SEP]", "[PAD]"):
break
output_tokens.append(t)
output_sequence = ' '.join(detokenize(output_tokens))
output_lines[buf_id[i]] = output_sequence
if args.need_score_traces:
score_trace_list[buf_id[i]] = {
'scores': traces['scores'][i], 'wids': traces['wids'][i], 'ptrs': traces['ptrs'][i]}
pbar.update(1)
if args.output_file:
fn_out = args.output_file
else:
fn_out = model_recover_path+'.'+args.split
with open(fn_out, "w", encoding="utf-8") as fout:
for l in output_lines:
fout.write(l)
fout.write("\n")
if args.need_score_traces:
with open(fn_out + ".trace.pickle", "wb") as fout_trace:
pickle.dump(
{"version": 0.0, "num_samples": len(input_lines)}, fout_trace)
for x in score_trace_list:
pickle.dump(x, fout_trace)
if __name__ == "__main__":
main()