-
Notifications
You must be signed in to change notification settings - Fork 3
/
Ens-TI-DIM.py
278 lines (212 loc) · 10.8 KB
/
Ens-TI-DIM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# coding=utf-8
"""Implementation of MI-FGSM SVRG Attack."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from posix import XATTR_CREATE
import numpy as np
import cv2
import pandas as pd
import scipy.stats as st
from imageio import imread, imsave
from tensorflow.contrib.image import transform as images_transform
from tensorflow.contrib.image import rotate as images_rotate
import tensorflow as tf
from nets import inception_v3, inception_v4, inception_resnet_v2, resnet_v2
import random
slim = tf.contrib.slim
tf.flags.DEFINE_integer('batch_size', 10, 'How many images process at one time.')
tf.flags.DEFINE_float('max_epsilon', 16.0, 'max epsilon.')
tf.flags.DEFINE_integer('num_iter', 10, 'max iteration.')
tf.flags.DEFINE_float('momentum', 1.0, 'momentum about the model.')
tf.flags.DEFINE_integer(
'image_width', 299, 'Width of each input images.')
tf.flags.DEFINE_integer(
'image_height', 299, 'Height of each input images.')
tf.flags.DEFINE_float('prob', 0.5, 'probability of using diverse inputs.')
tf.flags.DEFINE_integer('image_resize', 331, 'Height of each input images.')
tf.flags.DEFINE_string('checkpoint_path', './models',
'Path to checkpoint for pretained models.')
tf.flags.DEFINE_string('input_dir', './dataset/images/',
'Input directory with images.')
tf.flags.DEFINE_string('output_dir', './results/Ens-TI-DIM/',
'Output directory with images.')
tf.flags.DEFINE_integer('seed', 1000, 'seed num')
FLAGS = tf.flags.FLAGS
np.random.seed(FLAGS.seed)
tf.set_random_seed(FLAGS.seed)
random.seed(FLAGS.seed)
model_checkpoint_map = {
'inception_v3': os.path.join(FLAGS.checkpoint_path, 'inception_v3.ckpt'),
'inception_v4': os.path.join(FLAGS.checkpoint_path, 'inception_v4.ckpt'),
'inception_resnet_v2': os.path.join(FLAGS.checkpoint_path, 'inception_resnet_v2_2016_08_30.ckpt'),
'resnet_v2': os.path.join(FLAGS.checkpoint_path, 'resnet_v2_101.ckpt')}
def gkern(kernlen=21, nsig=3):
"""Returns a 2D Gaussian kernel array."""
x = np.linspace(-nsig, nsig, kernlen)
kern1d = st.norm.pdf(x)
kernel_raw = np.outer(kern1d, kern1d)
kernel = kernel_raw / kernel_raw.sum()
return kernel
kernel = gkern(7, 3).astype(np.float32)
stack_kernel = np.stack([kernel, kernel, kernel]).swapaxes(2, 0)
stack_kernel = np.expand_dims(stack_kernel, 3)
def load_images(input_dir, batch_shape):
"""Read png images from input directory in batches.
Args:
input_dir: input directory
batch_shape: shape of minibatch array, i.e. [batch_size, height, width, 3]
Yields:
filenames: list file names without path of each image
Lenght of this list could be less than batch_size, in this case only
first few images of the result are elements of the minibatch.
images: array with all images from this batch
"""
images = np.zeros(batch_shape)
filenames = []
idx = 0
batch_size = batch_shape[0]
for filepath in tf.gfile.Glob(os.path.join(input_dir, '*')):
with tf.gfile.Open(filepath, 'rb') as f:
image = imread(f, pilmode='RGB').astype(np.float) / 255.0
# Images for inception classifier are normalized to be in [-1, 1] interval.
images[idx, :, :, :] = image * 2.0 - 1.0
filenames.append(os.path.basename(filepath))
idx += 1
if idx == batch_size:
yield filenames, images
filenames = []
images = np.zeros(batch_shape)
idx = 0
if idx > 0:
yield filenames, images
def save_images(images, filenames, output_dir):
"""Saves images to the output directory.
Args:
images: array with minibatch of images
filenames: list of filenames without path
If number of file names in this list less than number of images in
the minibatch then only first len(filenames) images will be saved.
output_dir: directory where to save images
"""
for i, filename in enumerate(filenames):
# Images for inception classifier are normalized to be in [-1, 1] interval,
# so rescale them back to [0, 1].
with tf.gfile.Open(os.path.join(output_dir, filename), 'w') as f:
imsave(f, (images[i, :, :, :] + 1.0) * 0.5, format='png')
def check_or_create_dir(directory):
"""Check if directory exists otherwise create it."""
if not os.path.exists(directory):
os.makedirs(directory)
def ensemble_graph(x, one_hot, num_classes = 1001):
x_nes = x
with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
logits_inc_v3, end_points_inc_v3 = inception_v3.inception_v3(
input_diversity(x_nes), num_classes=num_classes, is_training=False, reuse=tf.AUTO_REUSE)
with slim.arg_scope(inception_v4.inception_v4_arg_scope()):
logits_inc_v4, end_points_inc_v4 = inception_v4.inception_v4(
input_diversity(x_nes), num_classes=num_classes, is_training=False, reuse=tf.AUTO_REUSE)
with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope()):
logits_inc_res, end_points_inc_res = inception_resnet_v2.inception_resnet_v2(
input_diversity(x_nes), num_classes=num_classes, is_training=False, reuse=tf.AUTO_REUSE)
with slim.arg_scope(resnet_v2.resnet_arg_scope()):
logits_res_v2, end_points_res_v2 = resnet_v2.resnet_v2_101(
input_diversity(x_nes), num_classes=num_classes, is_training=False, reuse=tf.AUTO_REUSE)
logits = (logits_inc_v3 + logits_inc_v4 + logits_inc_res + logits_res_v2) / 4
auxlogits = (end_points_inc_v3['AuxLogits'] + end_points_inc_v4['AuxLogits'] + end_points_inc_res['AuxLogits']) / 3
cross_entropy = tf.losses.softmax_cross_entropy(one_hot, logits, label_smoothing=0.0, weights=1.0)
cross_entropy += tf.losses.softmax_cross_entropy(one_hot, auxlogits, label_smoothing=0.0, weights=0.4)
noise = tf.gradients(cross_entropy, x)[0]
return noise
def deepconv_graph(noiseinput):
noiseoutput=tf.nn.depthwise_conv2d(noiseinput, stack_kernel, strides=[1, 1, 1, 1], padding='SAME')
return noiseoutput
def image_augmentation(x):
# img, noise
one = tf.fill([tf.shape(x)[0], 1], 1.)
zero = tf.fill([tf.shape(x)[0], 1], 0.)
transforms = tf.concat([one, zero, zero, zero, one, zero, zero, zero], axis=1)
rands = tf.concat([tf.truncated_normal([tf.shape(x)[0], 6], stddev=0.05), zero, zero], axis=1)
return images_transform(x, transforms + rands, interpolation='BILINEAR')
def image_rotation(x):
""" imgs, scale, scale is in radians """
rands = tf.truncated_normal([tf.shape(x)[0]], stddev=0.05)
return images_rotate(x, rands, interpolation='BILINEAR')
def input_diversity(input_tensor):
rnd = tf.random_uniform((), FLAGS.image_width, FLAGS.image_resize, dtype=tf.int32)
rescaled = tf.image.resize_images(input_tensor, [rnd, rnd], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
h_rem = FLAGS.image_resize - rnd
w_rem = FLAGS.image_resize - rnd
pad_top = tf.random_uniform((), 0, h_rem, dtype=tf.int32)
pad_bottom = h_rem - pad_top
pad_left = tf.random_uniform((), 0, w_rem, dtype=tf.int32)
pad_right = w_rem - pad_left
padded = tf.pad(rescaled, [[0, 0], [pad_top, pad_bottom], [pad_left, pad_right], [0, 0]], constant_values=0.)
padded.set_shape((input_tensor.shape[0], FLAGS.image_resize, FLAGS.image_resize, 3))
ret = tf.cond(tf.random_uniform(shape=[1])[0] < tf.constant(FLAGS.prob), lambda: padded, lambda: input_tensor)
ret = tf.image.resize_images(ret, [FLAGS.image_height, FLAGS.image_width],
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
return ret
# return tf.cond(tf.random_uniform(shape=[1])[0] < tf.constant(FLAGS.prob), lambda: padded, lambda: input_tensor)
def main(_):
f2l = load_labels('./dataset/val_rs.csv')
eps = 2 * FLAGS.max_epsilon / 255.0
num_iter = FLAGS.num_iter
alpha = eps / num_iter
momentum = FLAGS.momentum
num_classes = 1001
batch_shape = [FLAGS.batch_size, FLAGS.image_height, FLAGS.image_width, 3]
tf.logging.set_verbosity(tf.logging.INFO)
check_or_create_dir(FLAGS.output_dir)
with tf.Graph().as_default():
# Prepare graph
x_input = tf.placeholder(tf.float32, shape=batch_shape)
y_input = tf.constant(np.zeros([FLAGS.batch_size]), tf.int64)
one_hot = tf.one_hot(y_input, num_classes)
grad_ensemble = ensemble_graph(x_input, one_hot)
noise_input = tf.placeholder(tf.float32, shape=batch_shape)
noise_output = deepconv_graph(noise_input)
# Run computation
s1 = tf.train.Saver(slim.get_model_variables(scope='InceptionV3'))
s2 = tf.train.Saver(slim.get_model_variables(scope='InceptionV4'))
s3 = tf.train.Saver(slim.get_model_variables(scope='InceptionResnetV2'))
s4 = tf.train.Saver(slim.get_model_variables(scope='resnet_v2'))
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
s1.restore(sess, model_checkpoint_map['inception_v3'])
s2.restore(sess, model_checkpoint_map['inception_v4'])
s3.restore(sess, model_checkpoint_map['inception_resnet_v2'])
s4.restore(sess, model_checkpoint_map['resnet_v2'])
idx = 0
l2_diff = 0
for filenames, images in load_images(FLAGS.input_dir, batch_shape):
idx = idx + 1
print("start the i={} attack".format(idx))
labels = []
for filename in filenames:
labels.append(f2l[filename])
x = np.copy(images)
x_min = np.clip(x - eps, -1.0, 1.0)
x_max = np.clip(x + eps, -1.0, 1.0)
grad = np.zeros(shape=batch_shape, dtype=np.float32)
for i in range(num_iter):
# compute the batch gradient
noise = sess.run(grad_ensemble, feed_dict={x_input: x, y_input: labels})
noise=sess.run(noise_output, feed_dict={noise_input: noise})
noise = noise / np.mean(np.abs(noise), (1, 2, 3), keepdims=True)
grad = momentum * grad + noise
x = x + alpha * np.sign(grad)
x = np.clip(x, x_min, x_max)
save_images(x, filenames, FLAGS.output_dir)
diff = (x + 1) / 2 * 255 - (images + 1) / 2 * 255
l2_diff += np.mean(np.linalg.norm(np.reshape(diff, [-1, 3]), axis=1))
print('{:.2f}'.format(l2_diff * FLAGS.batch_size / 1000))
def load_labels(file_name):
import pandas as pd
dev = pd.read_csv(file_name)
f2l = {dev.iloc[i]['filename']: dev.iloc[i]['label'] for i in range(len(dev))}
return f2l
if __name__ == '__main__':
tf.app.run()