-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
72 lines (58 loc) · 2.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os
import pandas as pd
def accuracy(outputs, targets, topk=(1,)):
# compute the topk accuracy
maxk = max(topk)
batch_size = targets.size(0)
_, pred = outputs.topk(maxk, 1, True, True) # return the topk scores in every input
pred = pred.t() # shape:(maxk,N)
correct = pred.eq(targets.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def record_info(info, filename, mode):
if mode == 'train':
result = (
'Batch Time {batch_time} '
'Epoch Time {epoch_time} '
'Data {data_time} \n'
'Loss {loss} '
'Prec@1 {top1} '
'Prec@5 {top5}\n'
'LR {lr}\n'.format(batch_time=info['Batch Time'], epoch_time=info['Epoch Time'],
data_time=info['Data Time'], loss=info['Loss'],
top1=info['Prec@1'], top5=info['Prec@5'],lr=info['lr']))
print(result)
df = pd.DataFrame.from_dict(info)
column_names = ['Epoch', 'Batch Time', 'Data Time', 'Loss', 'Prec@1', 'Prec@5', 'lr']
if mode == 'test':
result = (
'Batch Time {batch_time} '
'Epoch Time {epoch_time} \n'
'Loss {loss} '
'Prec@1 {top1} '
'Prec@5 {top5} \n'.format(batch_time=info['Batch Time'], epoch_time=info['Epoch Time'],
loss=info['Loss'], top1=info['Prec@1'], top5=info['Prec@5']))
print(result)
df = pd.DataFrame.from_dict(info)
column_names = ['Epoch', 'Batch Time', 'Epoch Time', 'Loss', 'Prec@1', 'Prec@5']
if not os.path.isfile(filename):
df.to_csv(filename, index=False, columns=column_names)
else: # else it exists so append without writing the header
df.to_csv(filename, mode='a', header=False, index=False, columns=column_names)