-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgnn_experiment.py
328 lines (244 loc) · 12.8 KB
/
gnn_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import argparse
import os
import numpy as np
import pickle
import torch.utils.data
import torch.nn as nn
from GCN_model.utlis.utils import *
from utils import *
from DataTransformer import transform
from split_data import run
def add_args(parser):
"""
parser : argparse.ArgumentParser
return a parser added with args required by fit
"""
# Training settings
parser.add_argument('--case_name', type=str, default='pcc', help='Dataset used for training')
parser.add_argument('--data_dir', type=str, default="./result/ISRUC_S3_pcc/", help='Data directory')
parser.add_argument('--model', type=str, default='gcn', help='Model name. Currently supports SAGE, GAT and GCN.')
parser.add_argument('--normalize_features', type=bool, default=False,
help='Whether or not to symmetrically normalize feat matrices')
parser.add_argument('--normalize_adjacency', type=bool, default=False,
help='Whether or not to symmetrically normalize adj matrices')
parser.add_argument('--sparse_adjacency', type=bool, default=False,
help='Whether or not the adj matrix is to be processed as a sparse matrix')
parser.add_argument('--hidden_size', type=int, default=32, help='Size of GNN hidden layer')
parser.add_argument('--node_embedding_dim', type=int, default=32,
help='Dimensionality of the vector space the atoms will be embedded in')
parser.add_argument('--alpha', type=float, default=0.2, help='Alpha value for LeakyRelu used in GAT')
parser.add_argument('--num_heads', type=int, default=2, help='Number of attention heads used in GAT')
parser.add_argument('--dropout', type=float, default=0.3, help='Dropout used between GraphSAGE layers')
parser.add_argument('--readout_hidden_dim', type=int, default=64, help='Size of the readout hidden layer')
parser.add_argument('--graph_embedding_dim', type=int, default=64,
help='Dimensionality of the vector space the molecule will be embedded in')
parser.add_argument('--client_optimizer', type=str, default='adam', metavar="O",
help='SGD with momentum; adam')
parser.add_argument('--lr', type=float, default=0.0015, metavar='LR',
help='learning rate (default: 0.0015)')
parser.add_argument('--batch_size', type=int, default=8, metavar='BS',
help='batch size (default: batch_size)')
parser.add_argument('--wd', help='weight decay parameter;', metavar="WD", type=float, default=0.001)
parser.add_argument('--epochs', type=int, default=5, metavar='EP',
help='how many epochs will be trained locally')
parser.add_argument('--frequency_of_the_test', type=int, default=200, help='How frequently to run eval')
parser.add_argument('--device', type=str, default="cuda:0", metavar="DV", help='gpu device for training')
parser.add_argument('--metric', type=str, default='roc-auc',
help='Metric to be used to evaluate classification models')
parser.add_argument('--test_freq', type=int, default=1024, help='How often to test')
args = parser.parse_args()
return args
def train_model(args):
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
path = args.data_dir[:-1]
case_name = args.case_name
epochs = args.epochs
lr = args.lr
batch_size = args.batch_size
train_adj_matrix = []
train_feature_matrices = []
train_labels = None
transformed_path = path + "/single"
if not os.path.exists(transformed_path):
print("generate train data")
length = 0
for folder in os.listdir(path + "/" + case_name):
if folder not in ["test", "train"]:
adj_matrix, feature_matrices, labels = get_data(path + "/" + case_name + "/" + folder)
train_adj_matrix += list(adj_matrix)
train_feature_matrices += list(feature_matrices)
if type(train_labels) == type(None):
train_labels = labels
else:
train_labels = np.concatenate((train_labels, labels), axis=0)
length = labels.shape[0]
mask = np.random.choice(np.arange(train_labels.shape[0]), size=length, replace=False, p=None)
os.mkdir(transformed_path)
os.mkdir(transformed_path + "/train")
writer = open("{}/train/{}.pkl".format(transformed_path, "adjacency_matrices"), 'wb')
pickle.dump(np.array(train_adj_matrix)[mask], writer)
writer.close()
writer = open("{}/train/{}.pkl".format(transformed_path, "feature_matrices"), 'wb')
pickle.dump(np.array(train_feature_matrices)[mask], writer)
writer.close()
np.save("{}/train/{}.npy".format(transformed_path, "labels"), train_labels[mask])
compact = (args.model == 'graphsage')
# 加载数据
train_data_set = []
test_data_set = []
feat_dim = 256
num_cats = 5
print("Load: {}/{}".format(transformed_path, "train"))
loaded_data = get_dataloader(transformed_path + "/" + "train",
compact=False,
normalize_features=False,
normalize_adj=False)
adj_matrix, feature_matrices, labels = get_data(transformed_path + "/train")
feat_dim = feature_matrices[0].shape[1]
num_cats = labels[0].shape[0]
print("lenth = %d" % len(loaded_data))
print("feat_dim = %d" % feat_dim)
print("num_cats = %d" % num_cats)
print()
train_data_set.append(loaded_data)
print("Train mask")
print(sum(labels))
print("Load: {}".format(path + "/" + case_name + "/test"))
loaded_data = get_dataloader(path + "/" + case_name + "/test",
compact=False,
normalize_features=False,
normalize_adj=False)
adj_matrix, feature_matrices, labels = get_data(path + "/" + case_name + "/test")
feat_dim = feature_matrices[0].shape[1]
num_cats = labels[0].shape[0]
print("lenth = %d" % len(loaded_data))
print("feat_dim = %d" % feat_dim)
print("num_cats = %d" % num_cats)
print()
test_data_set.append(loaded_data)
print("Test mask")
print(sum(labels))
# 初始化模型
device = torch.device("cuda:0" if (torch.cuda.is_available() and args.device == 'cuda:0') else "cpu")
os.mkdir(path + "/single_" + args.model)
logFile = open(path + "/single_" + args.model + "/log.txt", 'a+')
print("logfile:", path + "/single_" + args.model + "/log.txt")
global_model = get_model(args, feat_dim, num_cats)
print(global_model.readout)
print(global_model.readout, file=logFile)
# 给子节点设置训练的loss function和optimizer
criterion = torch.nn.BCEWithLogitsLoss(reduction='none')
opt = torch.optim.Adam(global_model.parameters(), lr=lr)
# 配置数据加载器
train_loader = train_data_set
test_loader = test_data_set
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
global_model.to(device=device, dtype=torch.float32, non_blocking=True)
global_model.train()
train_loader = train_data_set
test_loader = test_data_set
history_train = []
history_test = []
history_CM = []
best_model = None
best_f1 = 0
for e in range(epochs):
for mol_idxs in range(int(len(train_loader[0]) / batch_size)):
participants_loss_train = []
batch_loss = calculate_loss(model=global_model,
dataloader=iter(train_loader[0]),
batch_size=batch_size,
device=device,
criterion=criterion,
is_sage=compact)
optimizer = opt
optimizer.zero_grad()
participants_loss_train.append(batch_loss)
batch_loss.backward()
optimizer.step()
history_train.append(batch_loss)
if mol_idxs % 5 == 0 or mol_idxs == int(len(train_loader[0]) / batch_size) - 1:
global_loss_test = calculate_loss(model=global_model,
dataloader=iter(test_loader[0]),
batch_size=batch_size * 8,
device=device,
criterion=criterion,
is_sage=compact)
acc, f1, cm = acc_f1(global_model, iter(test_loader[0]), device, is_sage=compact)
print(
'Train epoch {:^3} at batch {:^5} with global accuracy {:5.4f}, F1 score {:5.4f}, test loss {:5.4f}, train loss {:5.4f}] [({:2.0f}%)]'.format(
e, mol_idxs,
acc, f1,
global_loss_test,
participants_loss_train[0],
mol_idxs / int(len(train_loader[0]) / batch_size) * 100), file=logFile)
history_test.append(global_loss_test)
print(cm, file=logFile)
print(
'Train epoch {:^3} at batch {:^5} with global accuracy {:5.4f}, F1 score {:5.4f}, test loss {:5.4f}, train loss {:5.4f}] [({:2.0f}%)]'.format(
e, mol_idxs,
acc, f1,
global_loss_test,
participants_loss_train[0],
mol_idxs / int(len(train_loader[0]) / batch_size) * 100))
history_test.append(global_loss_test)
# print(cm)
history_CM.append(cm)
if f1 > best_f1:
best_model = global_model
best_f1 = f1
print("", file=logFile)
print()
logFile.close()
np.save(path + "/single_" + args.model + "/history_CM", np.array(history_CM))
np.save(path + "/single_" + args.model + "/history_test",
np.array([loss.cpu().detach().numpy() for loss in history_test]))
np.save(path + "/single_" + args.model + "/history_train",
np.array([loss.cpu().detach().numpy() for loss in history_train]))
torch.save(global_model, path + "/single_" + args.model + "/global_model.model")
best_model.eval()
best_model.to(device)
with torch.no_grad():
y_pred = []
y_true = []
masks = []
if compact:
for mol_idx, (forest, feature_matrix, label, mask) in enumerate(iter(test_loader[0])):
forest = [level.to(device=device, dtype=torch.long, non_blocking=True) for level in forest]
feature_matrix = feature_matrix.to(device=device, dtype=torch.float32, non_blocking=True)
logits = best_model(forest, feature_matrix)
y_pred.append(nn.Sigmoid()(logits).cpu().numpy())
y_true.append(label.numpy())
masks.append(mask.numpy())
else:
for mol_idx, (adj_matrix, feature_matrix, label, mask) in enumerate(iter(test_loader[0])):
adj_matrix = adj_matrix.to(device=device, dtype=torch.float32, non_blocking=True)
feature_matrix = feature_matrix.to(device=device, dtype=torch.float32, non_blocking=True)
logits = best_model(adj_matrix, feature_matrix)
y_pred.append(nn.Sigmoid()(logits).cpu().numpy())
y_true.append(label.numpy())
masks.append(mask.numpy())
y_pred = np.array(y_pred)
y_true = np.array(y_true)
masks = np.array(masks)
AllPred = np.argmax(y_pred, axis=1)
AllTrue = np.argmax(y_true, axis=1)
PrintScore(AllTrue, AllPred, savePath=path + "/single_" + args.model + "/")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
args = add_args(parser)
path = {
'data': "./data/ISRUC_S3/ISRUC_S3.npz",
'save': args.data_dir,
"cheb_k": 3,
"disM": "./data/ISRUC_S3/DistanceMatrix.npy",
"feature": './output/Feature_1.npz'
}
transform(path, args.case_name)
run(path['save'],args.case_name)
train_model(args)
# python fed_experiment.py --model gat --case_name knn --data_dir ./result/ISRUC_S3_knn
# python fed_experiment.py --model gcn --case_name knn --data_dir ./result/ISRUC_S3_knn
# python fed_experiment.py --model graphsage --case_name knn --data_dir ./result/ISRUC_S3_knn