-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfed_main.py
402 lines (371 loc) · 17.9 KB
/
fed_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import torch
import argparse
import numpy as np
from load_data import get_data
from models import CTranModel
from config_args import get_args
import utils.evaluate as evaluate
import utils.logger as logger
from optim_schedule import WarmupLinearSchedule
from run_epoch import run_epoch
import logging
from tqdm import tqdm
import datetime
import os
import random
import clip
import json
from scipy.special import softmax
def init_nets(args, is_global=False, state_weight=None, label_weight=None):
if is_global:
n_parties = 1
else:
n_parties = args.n_parties
nets = {net_i: None for net_i in range(n_parties)}
### FLAIR
for net_i in range(n_parties):
model = CTranModel(args.num_labels,args.use_lmt,args.pos_emb,args.layers,args.heads,args.dropout,args.no_x_features, state_weight=state_weight, label_weight=label_weight)
nets[net_i] = model
model_meta_data = []
layer_type = []
for (k, v) in nets[0].state_dict().items():
model_meta_data.append(v.shape)
layer_type.append(k)
return nets, model_meta_data, layer_type
def local_train_net(nets, args, u_id, test_dl = None, device="cpu", g_model=None, emb_feat=None, clip_model=None):
data_pts = 0
net_dataidx_map = {}
loss_based_agg_list = []
for net_id, net in nets.items():
net.to(device)
# TODO: for COCO-dataset, just use indexing of the original dataset to have new subset dataset
# TODO: VOC dataset is similar
if args.dataset == 'coco' or args.dataset == 'voc':
sub_dst = torch.utils.data.Subset(train_dl_global.dataset, partition_idx_map[net_id])
train_dl_local = torch.utils.data.DataLoader(sub_dst, batch_size=args.batch_size,shuffle=True, num_workers=args.workers,drop_last=False)
net_dataidx_map[net_id] = len(sub_dst)
data_pts += len(sub_dst)
else:
train_dl_local, test_dl, _, train_dataset = get_data(args, curr_user=u_id[net_id])
# for fedavg
net_dataidx_map[net_id] = len(train_dataset)
data_pts += len(train_dataset)
n_epoch = args.epochs
train_metrics, testacc = train_net(net_id, net, train_dl_local, test_dl, n_epoch, args, device=device, g_model=g_model, emb_feat=emb_feat, clip_model=clip_model)
# for loss-based agg.
loss_based_agg_list.append(train_metrics['loss'])
return data_pts, net_dataidx_map, loss_based_agg_list
def train_net(net_id, model, train_dataloader, valid_dataloader, epochs, args, device="cpu", g_model=None, emb_feat=None, clip_model=None):
fl_logger.info('Training network %s' % str(net_id))
loss_logger = logger.LossLogger(args.model_name)
if args.optim == 'adam':
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()),lr=args.lr)#, weight_decay=0.0004)
elif args.optim == 'adamw':
optimizer = torch.optim.AdamW(filter(lambda p: p.requires_grad, model.parameters()),lr=args.lr)
else:
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, momentum=0.9, weight_decay=1e-4)
if args.warmup_scheduler:
step_scheduler = None
scheduler_warmup = WarmupLinearSchedule(optimizer, 1, 300000)
else:
scheduler_warmup = None
if args.scheduler_type == 'plateau':
step_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,mode='min',factor=0.1,patience=5)
elif args.scheduler_type == 'step':
step_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.scheduler_step, gamma=args.scheduler_gamma)
else:
step_scheduler = None
test_loader = None
for epoch in range(epochs):
all_preds, all_targs, all_masks, all_ids, train_loss, train_loss_unk = run_epoch(args,model,train_dataloader,optimizer,epoch,'Training',train=True,warmup_scheduler=scheduler_warmup,global_model=g_model,emb_feat=emb_feat, clip_model=clip_model)
train_metrics = evaluate.compute_metrics(args,all_preds,all_targs,all_masks,train_loss,train_loss_unk,0,args.train_known_labels, verbose=False)
loss_logger.log_losses('train.log',epoch,train_loss,train_metrics,train_loss_unk)
if step_scheduler is not None:
if args.scheduler_type == 'step':
step_scheduler.step(epoch)
elif args.scheduler_type == 'plateau':
step_scheduler.step(train_loss_unk)
fl_logger.info(f'{train_metrics["mAP"]}, {train_metrics["CF1"]}, {train_metrics["loss"]:.3f}')
test_acc = 0
fl_logger.info(' ** Training complete **')
return train_metrics, test_acc
if __name__ == '__main__':
args = get_args(argparse.ArgumentParser())
seed = args.init_seed
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
random.seed(seed)
print(f'Seed: {seed}')
if args.dataset == 'coco' or args.dataset == 'voc':
train_dl_global, valid_dl_global, test_dl_global = get_data(args)
else:
train_dl_global, valid_dl_global, test_dl_global, fed_hdf5 = get_data(args)
id_list = list(fed_hdf5['train'].keys())
sort_id_list = np.load('sorted_list.npy')
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
# logging.basicConfig()
log_file_name = 'experiment_log-%s' % (datetime.datetime.now().strftime("%Y-%m-%d-%H:%M-%S"))
log_path = log_file_name + '.log'
logging.basicConfig(
filename=os.path.join(args.results_dir, log_path),
# filename='/home/qinbin/test.log',
format='%(asctime)s %(levelname)-8s %(message)s',
datefmt='%m-%d %H:%M', level=logging.DEBUG, filemode='w')
fl_logger = logging.getLogger()
fl_logger.setLevel(logging.INFO)
device = torch.device(args.device)
state_prompt = ['positive', 'negative']
clip_model, preprocess = clip.load("ViT-B/16", device=device)
label_feats = []
if args.dataset == 'coco':
category_list = {
1: u'person',
2: u'bicycle',
3: u'car',
4: u'motorcycle',
5: u'airplane',
6: u'bus',
7: u'train',
8: u'truck',
9: u'boat',
10: u'traffic light',
11: u'fire hydrant',
12: u'stop sign',
13: u'parking meter',
14: u'bench',
15: u'bird',
16: u'cat',
17: u'dog',
18: u'horse',
19: u'sheep',
20: u'cow',
21: u'elephant',
22: u'bear',
23: u'zebra',
24: u'giraffe',
25: u'backpack',
26: u'umbrella',
27: u'handbag',
28: u'tie',
29: u'suitcase',
30: u'frisbee',
31: u'skis',
32: u'snowboard',
33: u'sports ball',
34: u'kite',
35: u'baseball bat',
36: u'baseball glove',
37: u'skateboard',
38: u'surfboard',
39: u'tennis racket',
40: u'bottle',
41: u'wine glass',
42: u'cup',
43: u'fork',
44: u'knife',
45: u'spoon',
46: u'bowl',
47: u'banana',
48: u'apple',
49: u'sandwich',
50: u'orange',
51: u'broccoli',
52: u'carrot',
53: u'hot dog',
54: u'pizza',
55: u'donut',
56: u'cake',
57: u'chair',
58: u'couch',
59: u'potted plant',
60: u'bed',
61: u'dining table',
62: u'toilet',
63: u'tv',
64: u'laptop',
65: u'mouse',
66: u'remote',
67: u'keyboard',
68: u'cell phone',
69: u'microwave',
70: u'oven',
71: u'toaster',
72: u'sink',
73: u'refrigerator',
74: u'book',
75: u'clock',
76: u'vase',
77: u'scissors',
78: u'teddy bear',
79: u'hair drier',
80: u'toothbrush'}
label_space = list(category_list.values())
prompt = []
for item in label_space:
prompt.append(f'The photo contains {item}.')
with torch.no_grad():
label_text = clip.tokenize(prompt).to(device)
label_text_features = clip_model.encode_text(label_text)
label_text_features = label_text_features / label_text_features.norm(dim=1, keepdim=True)
elif args.dataset == 'voc':
label_space = ['Aeroplane',
'Bicycle',
'Bird',
'Boat',
'Bottle',
'Bus',
'Car',
'Cat',
'Chair',
'Cow',
'Diningtable',
'Dog',
'Horse',
'Motorbike',
'Person',
'Pottedplant',
'Sheep',
'Sofa',
'Train',
'Tvmonitor']
prompt = []
for item in label_space:
prompt.append(f'The photo contains {item}.')
with torch.no_grad():
label_text = clip.tokenize(prompt).to(device)
label_text_features = clip_model.encode_text(label_text)
label_text_features = label_text_features / label_text_features.norm(dim=1, keepdim=True)
elif args.dataset == 'flair_fed':
if args.coarse_prompt_type == 'avg':
# TODO: pooling of the fg labels
with torch.no_grad():
with open(os.path.join(args.dataroot, 'flair') + '/label_map_for_text.json') as f:
label_inp = json.load(f)
for k, v in label_inp.items():
pts = [f'The photo contains {text}' for text in v]
tokens = clip.tokenize(pts).to(device)
feats = clip_model.encode_text(tokens).cpu()
feats = torch.mean(feats, dim=0)
label_feats.append(feats.view(1, -1))
label_text_features = torch.cat(label_feats, dim=0)
elif args.coarse_prompt_type == 'concat':
prompt = []
if args.flair_fine:
fg_label_space = np.load('fine_g.npy')
for item in fg_label_space:
prompt.append(f'The photo contains {item}.')
else:
# for item in coarse_label_space:
# prompt.append(f'The photo contains {item}.')
coarse_label_space = []
with open(os.path.join(args.dataroot, 'flair') + '/label_map_for_text.json') as f:
label_inp = json.load(f)
for k, v in label_inp.items():
if len(v) >= 20:
tmp_v = v[:20]
else:
tmp_v = v
coarse_label_space.append(','.join(tmp_v))
for item in coarse_label_space:
prompt.append(f'The photo contains {item}.')
with torch.no_grad():
label_text = clip.tokenize(prompt).to(device)
label_text_features = clip_model.encode_text(label_text)
label_text_features = label_text_features / label_text_features.norm(dim=1, keepdim=True)
# state-embedding
state_text = clip.tokenize(state_prompt).to(device)
with torch.no_grad():
weight = clip_model.encode_text(state_text)
weight = weight / weight.norm(dim=1, keepdim=True)
weight = torch.cat((torch.zeros(512).view(1, -1).to(device), weight),0)
if args.inference:
test_id_list = list(fed_hdf5['test'].keys())
# run inference
tmp_model, _, _ = init_nets(args, is_global=True, state_weight=weight, label_weight=label_text_features)
tmp_model = tmp_model[0]
ckpt = torch.load(args.ckpt_path)
tmp_model.load_state_dict(ckpt['state_dict'])
tmp_model.to(device)
result = []
for i in tqdm(range(len(test_id_list))):
test_dl_local, test_dl, _, test_dataset = get_data(args, curr_user=test_id_list[i])
all_preds,all_targs,all_masks,all_ids,test_loss,test_loss_unk = run_epoch(args,tmp_model,test_dl_local,None,1,'Testing', global_model=tmp_model, emb_feat=label_text_features, clip_model=clip_model)
test_metrics = evaluate.compute_metrics(args,all_preds,all_targs,all_masks,test_loss,test_loss_unk,0,1, verbose=False)
save_metrics = {'C-AP': test_metrics['mAP'],
'O-AP': test_metrics['O_mAP'],
'CF1': test_metrics['CF1'],
'OF1': test_metrics['OF1']}
result.append(save_metrics)
np.save('result_map.npy', np.array(result))
print('Inference done!')
exit()
# ---- fedavg algo. ---- #
# init models
fl_logger.info("Initializing nets")
nets, local_model_meta_data, layer_type = init_nets(args, is_global=False, state_weight=weight, label_weight=label_text_features)
global_models, global_model_meta_data, global_layer_type = init_nets(args, is_global=True, state_weight=weight, label_weight=label_text_features)
global_model = global_models[0]
global_para = global_model.state_dict()
if args.is_same_initial:
for net_id, net in nets.items():
net.load_state_dict(global_para)
# TOTAL_LEN = 345879
# TODO: COCO dataset, generate the partition map for use
# Homo:
n_train = len(train_dl_global.dataset)
idxs = np.random.permutation(n_train)
batch_idxs = np.array_split(
idxs, args.n_parties
) # As many splits as n_nets = number of clients
partition_idx_map = {i: batch_idxs[i] for i in range(args.n_parties)}
for curr_round in tqdm(range(args.comm_round)):
fl_logger.info("in comm round:" + str(curr_round))
if args.dataset in ['coco', 'voc']:
u_id = np.arange(args.n_parties)
else: # FLAIR dataset
u_id = np.random.choice(sort_id_list, size=args.n_parties, replace=False)
# print(f'Current select IDs: {u_id}')
global_para = global_model.state_dict()
for idx in range(len(u_id)):
nets[idx].load_state_dict(global_para)
# update global model
global_model.to(device)
total_data_points, net_dataidx_map, loss_based_agg_list = local_train_net(nets, args, u_id, test_dl=None, device=device, g_model=global_model, emb_feat=label_text_features, clip_model=clip_model)
fed_avg_freqs = [net_dataidx_map[r] / total_data_points for r in range(len(u_id))]
loss_based_agg_list_targ = [-1. * val for val in loss_based_agg_list]
loss_based_freqs = softmax(loss_based_agg_list, axis=0)
# global aggregation
for idx in range(len(u_id)):
## --- Simulate that the client can perform on testing set --- ##
# print(f'round {curr_round}: inference on net {idx}')
# all_preds,all_targs,all_masks,all_ids,test_loss,test_loss_unk = run_epoch(args,nets[idx],test_dl_global,None,1,'Testing', global_model=global_model, emb_feat=label_text_features, clip_model=clip_model)
# test_metrics = evaluate.compute_metrics(args,all_preds,all_targs,all_masks,test_loss,test_loss_unk,0,1)
## --- ---##
net_para = nets[idx].cpu().state_dict()
if idx == 0:
for key in net_para:
if args.agg_type == 'fedavg':
global_para[key] = net_para[key] * fed_avg_freqs[idx]
elif args.agg_type == 'loss':
global_para[key] = net_para[key] * loss_based_freqs[idx]
else:
for key in net_para:
if args.agg_type == 'fedavg':
global_para[key] += net_para[key] * fed_avg_freqs[idx]
elif args.agg_type == 'loss':
global_para[key] += net_para[key] * loss_based_freqs[idx]
global_model.load_state_dict(global_para)
global_model.to(device)
if curr_round % 10 == 0:
all_preds,all_targs,all_masks,all_ids,test_loss,test_loss_unk = run_epoch(args,global_model,test_dl_global,None,1,'Testing', global_model=global_model, emb_feat=label_text_features, clip_model=clip_model)
test_metrics = evaluate.compute_metrics(args,all_preds,all_targs,all_masks,test_loss,test_loss_unk,0,1)
# save global model
save_dict = {
'state_dict': global_model.state_dict(),
'test_mAP': test_metrics['mAP'],
'test_O_mAP': test_metrics['O_mAP'],
}
torch.save(save_dict, args.model_name+f'round_{curr_round}.pt')