-
Notifications
You must be signed in to change notification settings - Fork 8
/
main.py
235 lines (200 loc) · 9.61 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
import shutil
import torch.utils.data
# import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import argparse
import re
from util.helpers import makedir
import push, model, train_and_test as tnt
from util import save
from util.log import create_logger
from util.preprocess import mean, std, preprocess_input_function
import settings_CUB
parser = argparse.ArgumentParser()
parser.add_argument('-gpuid',type=str, default='0')
parser.add_argument('-arch',type=str, default='vgg19')
parser.add_argument('-dataset',type=str,default="CUB")
parser.add_argument('-times',type=str,default="test",help="experiment_run")
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpuid
print(os.environ['CUDA_VISIBLE_DEVICES'])
#setting parameter
experiment_run = args.times
base_architecture = args.arch
dataset_name = args.dataset
base_architecture_type = re.match('^[a-z]*', base_architecture).group(0)
#model save dir
model_dir = './saved_models/' + dataset_name+'/' + base_architecture + '/' + args.times + '/'
if os.path.exists(model_dir) is True:
shutil.rmtree(model_dir)
makedir(model_dir)
shutil.copy(src=os.path.join(os.getcwd(), __file__), dst=model_dir)
shutil.copy(src=os.path.join(os.getcwd(), 'settings_CUB.py'), dst=model_dir)
shutil.copy(src=os.path.join(os.getcwd(), 'models', base_architecture_type + '_features.py'), dst=model_dir)
shutil.copy(src=os.path.join(os.getcwd(), 'model.py'), dst=model_dir)
shutil.copy(src=os.path.join(os.getcwd(), 'train_and_test.py'), dst=model_dir)
log, logclose = create_logger(log_filename=os.path.join(model_dir, 'train.log'))
img_dir = os.path.join(model_dir, 'img')
makedir(img_dir)
weight_matrix_filename = 'outputL_weights'
prototype_img_filename_prefix = 'prototype-img'
prototype_self_act_filename_prefix = 'prototype-self-act'
proto_bound_boxes_filename_prefix = 'bb'
# load the hyper param
if dataset_name == "CUB":
#model param
num_classes = settings_CUB.num_classes
img_size = settings_CUB.img_size
add_on_layers_type = settings_CUB.add_on_layers_type
prototype_shape = settings_CUB.prototype_shape
prototype_activation_function = settings_CUB.prototype_activation_function
#datasets
train_dir = settings_CUB.train_dir
test_dir = settings_CUB.test_dir
train_push_dir = settings_CUB.train_push_dir
train_batch_size = settings_CUB.train_batch_size
test_batch_size = settings_CUB.test_batch_size
train_push_batch_size = settings_CUB.train_push_batch_size
#optimzer
joint_optimizer_lrs = settings_CUB.joint_optimizer_lrs
joint_lr_step_size = settings_CUB.joint_lr_step_size
warm_optimizer_lrs = settings_CUB.warm_optimizer_lrs
last_layer_optimizer_lr = settings_CUB.last_layer_optimizer_lr
# weighting of different training losses
coefs = settings_CUB.coefs
# number of training epochs, number of warm epochs, push start epoch, push epochs
num_train_epochs = settings_CUB.num_train_epochs
num_warm_epochs = settings_CUB.num_warm_epochs
push_start = settings_CUB.push_start
push_epochs = settings_CUB.push_epochs
else:
raise Exception("there are no settings file of datasets {}".format(dataset_name))
log(train_dir)
normalize = transforms.Normalize(mean=mean,std=std)
# all datasets
# train set
train_dataset = datasets.ImageFolder(
train_dir,
transforms.Compose([
transforms.Resize(size=(img_size, img_size)),
transforms.ToTensor(),
normalize,
]))
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=train_batch_size, shuffle=True,
num_workers=4, pin_memory=False)
# push set
train_push_dataset = datasets.ImageFolder(
train_push_dir,
transforms.Compose([
transforms.Resize(size=(img_size, img_size)),
transforms.ToTensor(),
]))
train_push_loader = torch.utils.data.DataLoader(
train_push_dataset, batch_size=train_push_batch_size, shuffle=False,
num_workers=4, pin_memory=False)
# test set
test_dataset = datasets.ImageFolder(
test_dir,
transforms.Compose([
transforms.Resize(size=(img_size, img_size)),
transforms.ToTensor(),
normalize,
]))
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=test_batch_size, shuffle=False,
num_workers=4, pin_memory=False)
# we should look into distributed sampler more carefully at torch.utils.data.distributed.DistributedSampler(train_dataset)
log('training set size: {0}'.format(len(train_loader.dataset)))
log('push set size: {0}'.format(len(train_push_loader.dataset)))
log('test set size: {0}'.format(len(test_loader.dataset)))
log('batch size: {0}'.format(train_batch_size))
log("backbone architecture:{}".format(base_architecture))
log("basis concept size:{}".format(prototype_shape))
# construct the model
ppnet = model.construct_TesNet(base_architecture=base_architecture,
pretrained=True, img_size=img_size,
prototype_shape=prototype_shape,
num_classes=num_classes,
prototype_activation_function=prototype_activation_function,
add_on_layers_type=add_on_layers_type)
#if prototype_activation_function == 'linear':
# ppnet.set_last_layer_incorrect_connection(incorrect_strength=0)
ppnet = ppnet.cuda()
ppnet_multi = torch.nn.DataParallel(ppnet)
class_specific = True
# define optimizer
from settings_CUB import joint_optimizer_lrs, joint_lr_step_size
joint_optimizer_specs = \
[{'params': ppnet.features.parameters(), 'lr': joint_optimizer_lrs['features'], 'weight_decay': 1e-3}, # bias are now also being regularized
{'params': ppnet.add_on_layers.parameters(), 'lr': joint_optimizer_lrs['add_on_layers'], 'weight_decay': 1e-3},
{'params': ppnet.prototype_vectors, 'lr': joint_optimizer_lrs['prototype_vectors']},
]
joint_optimizer = torch.optim.Adam(joint_optimizer_specs)
joint_lr_scheduler = torch.optim.lr_scheduler.StepLR(joint_optimizer, step_size=joint_lr_step_size, gamma=0.1)
from settings_CUB import warm_optimizer_lrs
warm_optimizer_specs = \
[{'params': ppnet.add_on_layers.parameters(), 'lr': warm_optimizer_lrs['add_on_layers'], 'weight_decay': 1e-3},
{'params': ppnet.prototype_vectors, 'lr': warm_optimizer_lrs['prototype_vectors']},
]
warm_optimizer = torch.optim.Adam(warm_optimizer_specs)
from settings_CUB import last_layer_optimizer_lr
last_layer_optimizer_specs = [{'params': ppnet.last_layer.parameters(), 'lr': last_layer_optimizer_lr}]
last_layer_optimizer = torch.optim.Adam(last_layer_optimizer_specs)
#best acc
best_acc = 0
best_epoch = 0
best_time = 0
# train the model
log('start training')
for epoch in range(num_train_epochs):
log('epoch: \t{0}'.format(epoch))
#stage 1: Embedding space learning
#train
if epoch < num_warm_epochs:
tnt.warm_only(model=ppnet_multi, log=log)
_,train_results = tnt.train(model=ppnet_multi, dataloader=train_loader, optimizer=warm_optimizer,
class_specific=class_specific, coefs=coefs, log=log)
else:
tnt.joint(model=ppnet_multi, log=log)
joint_lr_scheduler.step()
_,train_results = tnt.train(model=ppnet_multi, dataloader=train_loader, optimizer=joint_optimizer,
class_specific=class_specific, coefs=coefs, log=log)
#test
accu,test_results = tnt.test(model=ppnet_multi, dataloader=test_loader,
class_specific=class_specific, log=log)
save.save_model_w_condition(model=ppnet, model_dir=model_dir, model_name=str(epoch) + 'nopush', accu=accu,
target_accu=0.70, log=log)
#stage2: Embedding space transparency
if epoch >= push_start and epoch in push_epochs:
push.push_prototypes(
train_push_loader, # pytorch dataloader (must be unnormalized in [0,1])
prototype_network_parallel=ppnet_multi, # pytorch network with prototype_vectors
class_specific=class_specific,
preprocess_input_function=preprocess_input_function, # normalize if needed
prototype_layer_stride=1,
root_dir_for_saving_prototypes=img_dir, # if not None, prototypes will be saved here
epoch_number=epoch, # if not provided, prototypes saved previously will be overwritten
prototype_img_filename_prefix=prototype_img_filename_prefix,
prototype_self_act_filename_prefix=prototype_self_act_filename_prefix,
proto_bound_boxes_filename_prefix=proto_bound_boxes_filename_prefix,
save_prototype_class_identity=True,
log=log)
accu,test_results = tnt.test(model=ppnet_multi, dataloader=test_loader,
class_specific=class_specific, log=log)
save.save_model_w_condition(model=ppnet, model_dir=model_dir, model_name=str(epoch) + 'push', accu=accu,
target_accu=0.70, log=log)
#stage3: concept based classification
if prototype_activation_function != 'linear':
tnt.last_only(model=ppnet_multi, log=log)
for i in range(20):
log('iteration: \t{0}'.format(i))
_,train_results= tnt.train(model=ppnet_multi, dataloader=train_loader, optimizer=last_layer_optimizer,
class_specific=class_specific, coefs=coefs, log=log)
accu,test_results = tnt.test(model=ppnet_multi, dataloader=test_loader,
class_specific=class_specific, log=log)
save.save_model_w_condition(model=ppnet, model_dir=model_dir, model_name=str(epoch) + '_' + str(i) + 'push', accu=accu,
target_accu=0.70, log=log)
logclose()